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4. Sketch of proof of Theorem. We follow the procedure in
Eskin [2], with some improvements, and modify the construction of
the parametrix in [5] which treats the diffractive case where (2) holds
with the opposite signature. (The details are given in [13].) We
look for the parametrix E(f) in the form:

(6) Gv=Gw,+G,v,+G,v,.

Here v="(‘v,, ‘v,, ‘v,) is a d*-vector whose components belong to
H-~(R") and G,, G, are operators analogous to the G®, G® in [5],
respectively, while G, is an m X m, matrix, different essentially from
the G, whose components are Fourier-Airy integral operators.

To construct G, we use such phase functions 6(x, /) and p(z, 5)
as in the diffractive case, where 7'=(3, 7/) e R'XR*-'. Let 7,=0 and
7" =&" with &=(&,&’). For definiteness suppose (9x/d&,) (7, E")>0.
Then 6 and p are real valued functions, defined on a conic neighbor-
hood of (z,7’), such that ¢*=0+(2/3)p** solve the eikonal equation
Qqy(x, $2)=0 for p>0, and that, for x,=0, detd,, >0, 4,,,,>0 and p,,
<0 (see [2]). Moreover p(x’, 0,7 )=c |7/ [, which has been given in
[12] and [14], where a=1,/|7|, and Q,(x, ¢;)=0(x;’) as x,—+0 for «a<<0
and |7/|=1. Notice that 6,,=2(x, 6,) and u(z, 0,)=a(p,,)’ for x,=0
and |y'|=1. Let Ai(z) be the Airy function of the first kind and set
A, ()=e""*Ai(e¥***z), which appear in the diffractive case. We then
use, as in [2], the Airy function A,(2)=A.%)+A_(z). It is known
that Ai(z) solves Ai”(z)=2zAi(z), is an entire function, real valued for
real z, and has its zeros only on the negative real axis. Besides,
Ai(0)>0, A7 (0)<0 and Ai(z) +wAi(wz)+0*Ai(ew’2)=0, where o=e®>",
Furthermore, for |z|>1 and —z<argz<m, Ai(z)=2z""e~-*"**"¥(z) and
@)~ o0z % where a, are real and a,=(24 7= )~'. Therefore
we have A (z)=Ai(—2), A, (2)=z""e*' =Y (z) and ¥, (z)~e™ '™
Oy (DR iz ¢ for (2| >1 and —rtrn/3<argz<mtw/3.

Now let ¢, be the canonical transformation defined by ¥ =
0,(x,0,7), &=06,(x',0,7) and ¢y, n)=(2',&). Then, under the in-
verse ¢ of ¢, the gliding ray I'(z/, &) is exactly (and locally) mapped
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onto the straight line, through (¥, 7/)=¢7'(@’, &), which is parallel to
the y, axis and on which ¥, increases as x, does. Hereafter we write
¥'=, ¥ e R*XR""'. Bearing this in mind, we seek G, in the form
(7) Govo= G140+ G2q,v,.

Here q,(¥,), ¢.(%,) are cutoff functions such that ¢,4¢,=1 and R,(«’, &)
#0 on NyN ¢, (supp ¢,). In fact, when (3) is satisfied, we take ¢,=0,
while if this is violated then G,q,v, is an additional term, needed only

to assure that v,(y) e H*(R"N{y,<¥,}). Moreover, for j=1,2, G, are
of the form:

(8) (Gw)(x)= j e (A (B4, —1ANDD )AL ©

+A, A =xNW()dy
Here

o) =[ e rw@Hdy,  C=— il
7 being a positive number which is taken large enough, g(x,7) is an
almost analytic continuation of p(x,7) with respect to « such that
5@, 0, 7)=C for |'|>1, and 6, &, and b, are also defined analogously.
(See [2].) The a,(x, 1), b;(x, ') are smooth m X m, matrices, defined on
a conic neighborhood of (z, 7’), which have the asymptotic expansions
A~ w00 by~ 55 by, Here a,,(x, ), b,.(x, y') are homogeneous
in 7 of degree k, k—1/3, respectively, and if we write
e~ " P(x, D){e'*(A(0)a;—iAYp)b,)}=Alo)e,—iAip)d,,

Ci~ D i Ciey Ay~ 55 Ay, Where ¢;,.(x, 1), d;.(x, 7)) are homogeneous
in 7/ of degree k, k—1/3, respectively, then ¢,,=0 for p=0, ¢;,=0(x;)
as x,—+0 for «<0, |7'|=1, and so are d;,. Such a;, b, have been con-
structed in [5], §§3 and 4, so that a;,,=W,g,,-+oW.h;p bje=W,h;+
W .9, where we have set W(x, 0,+4/ p p.)=W (&, 7))t/ p W,(x, 7)) and
950, 1), Rz, 7') are m, X m, matrices homogeneous in 5’ of degree 0,
—1/3, respectively. Moreover X,(') is a cutoff function such that
Aa|y[”)#0 on supp 1—%,. More precisely, let x(t) e C=(R") be a
function, supported in t>3/2, such that x(¢)=1 for ¢>2 and X'(¢t)=0.
Let ¢, be a positive number such that A,(t)>0 for t<3t,. We then set
LG =Xa |y #/t). It should be pointed out that another cutoff func-
tion X.(y)=%(a|7y[*) with 0<<e<{1/2 is adopted in [2] and that (4{/A)()
(1—2X.(5")) belongs only to a bad class Si;.

In what follows we consider only the more difficult case where (3)
is violated and concentrate our attention on the equation BGv|,,_,=f.
Noting that (6 —6) @/, 0, 7)€ Sy, we denote by @, the Fourier integral
operator with phase function 6(x’,0,7)—y’7y and with amplitude
ei@-0w0m Lot @71 be an elliptic Fourier integral operator with the
canoniczal transformation ¢;*' such that 9,0;' and @;'®, are the iden-
tities mo>d OPS;y. Suppose #,=0and (¢, &)=¢,(y’, /). We then have
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(9) 5 @flGJ=d1(1+LX1)+BJ-E’ =12,
where d, b, e OPS, and @,(y/,7)=a,(x, 1), b, @, 7)=|7]"b,(x, 1)
mod S;;. Moreover L, [ are the following Fourier multipliers defined
by (L%o)(;y’):L(;y’)w(y/) and so on, where L(y)=(A_/A)Q), L=K,+
K_D,+K(1~1), K.(f)=—1ily |7 (AL/A Q) and K(y)=—i|y|"
(A5/A)Q). Toderive precise estimates for these we set 7= (a®+|5/| ~**)/*
and denote constants independent of - by C and so on. Suppose |7/|
=>1. We then have
10595 G Clof |5 7L+ O/ | ).
The analogous estimates also hold for K, and K, if «>0 and «|y'["/*
<3t,, respectively. In particular, K_, K.X and K,(1—X,) belong to
St We have also
[0%08, L) C o, g7 2121 (14 O(7|7%)) for a>0.
Furthermore, setting (/)= L(y)e*“»="*1""!| we obtain
I )=1ie > A4+0(**) for aly/ P >1.
Therefore (L(1—X)1)() € Sy, and LX, is a Fourier integral operator
with amplitude (X)) € S}_., and with the following singular can-
onical transformation :
&Y 1) =Wo+2¢ a 1—(1/3)a®), y”"—(2/3)**y" [\, ),
which is similar to (3.33) in [2].
Now, applying @;! to BGv=Jf, from (6) through (9) we have
(10) O7'BGw,+907'B(Gv,+G,)=07"f.
Here ¢7'BG,=0'BG,q,+9;'BG,q,and 0;'BG,=¢,(1 +LX1)+ozj£, where
¢,d, e OPS?, and, mod Sii, ¢/, 7)=B®a,®, 1), 4, n)=|71"
B(x)b,(x, 7). According to (H,) and (H,), one can take a positive
number § such that, for a=0, R,(x/, &)+#0 if y,<7,—20 and R (a/, &)=0
if ¥,>7,—¢ and m,=2. We then take q,, ¢, so that ¢,(y,)=1 for y,>7%,
—66 and q.(y,)=1 for y,<%,—75. By (4) we may also reduce (10), as
in [5], § 5, to the following equation only for v,:
11 a(1+Lx,)qw,+b.Lqv,+cA+ LX)qv,+d Lg.v,= fy,
where a, b, ¢c and d € OPS? , are m, X m, matrices. Besides, setting
a:[a“ 0«12], b:[bu bm]’ 1)0:[”1] and foz[fl]’
gy Ay by Dy Ve Je
where a,;, by, v, and f, are scalar, and denoting by a,,(y’, 7") the prin-
cipal symbol of a,, and so on, we have, for y,>%,—35, a,,(%/, 7)=0(a),
au (', 7)=0(a), ¢y, 7)=I,,, and b,(y/, y)=1. Hereafter I, stands
for the identity matrix of degree k. Moreover by virtue of (H,) we
can assume arg a,(, 7)C[—=/2, (x—4,)/2] for «=0. Furthermore
(H,) yields, as in [11], p. 540, that, for y,<%,— 48, d(¥/, 5)=O0(a), a(y/’, 7/)
=1,,+0(), c(y, )=I,, and that Re a(y’, 7/)~* is positive definite for
a=0 and y,<¥%,—25. Finally, when m,>2, (H,) implies that a,,(¥, )
=O{«a) for y,>¥,—0.
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Now, a basic a priori estimate for (11) is the following :
[Tvlf=Crz [T fol i+ O i~

for z>1 and v, e H**'*(R") with supp 9,(y)C{zr«1}. To prove this
we use also

Re (Lv, A+Lxpv) = Corr(|TX0 [P+ (177 A =X 1) — O 0 |[2112)
for v € LA(R") with supp 9C{r’««1}, where C,>0. To deduce the
regularity near the hyperbolic region we need the following a priori
estimate. Suppose Py, 7)eSl, 0=p¥,7)<1 and p-s¥y, 7)<
@', 7). Then

Cor(|7pv, [+ 20D 17D Sol i 4+ O 704 - g+ e - o)

for z»>1 and w,e H**'*(R") such that supp 9,C{y|*<a<c"?} and
WF(w,)C{y,>7¥,—0}, where ¢,=1/2—(3/4)e and C, is a positive number
independent of p. Furthermore to conclude that v, € H*(R" N {y, <7},
where v, is a solution of (11), we use the following: Let f(y’) be a
distribution in E*, supported in a compact set CR"N{y,=0}. Then
A4+L)'"A =2 fe H*(R" N {y,<—6}) for any §>0. It should be
pointed out that (1+L)-'(1—x)x, belongs only to a bad class OPSy}
and hence does not have the pseudolocal property.
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