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4. Sketch of proof of Theorem. We follow the procedure in
Eskin [2], with some improvements, and modify the construction of
the parametrix in [5] which treats the diffractive ease where (2) holds,

with the opposite signature. (The details are given in [13].) We
look for the parametrix E(f) in the form"
6 ) Gv=Govo+Gv +Geve.

Here v=t(Vo, v,, Ve) is a d/-vector whose components belong to
H-(Rn) and G, Ge are operators analogous to the G(), G() in [5],
respectively, while Go is an mm matrix, different essentially rom
the G(’, whose components are Fourier-Airy integral operators.

To construct Go we use such phase functions O(x, 7/9 and p(x, ’)
as in the diffractive case, where /= (/0, r/’)e RR-. Let 0--0 and

"=" with ’=(0, "). For definiteness suppose (3Z/30) (, $’)0.
Then 0 and p are real valued functions, defined on a conic neighbor-
hood of (2, ’), such that -=0+(2/3)p/ solve, the eikonal equation
Qo(x, ;)=0 for p0, and that, for x=0, det Ox,,,0, txoo0 and
0 (see [2]). Moreover p(x’, 0, r/)=crlr/[/, which has been given in
[12] and [14], where c=r/0/Ir/I, and Qo(x, )=O(x) as x-+0 for
and It/l= 1. Notice that t= 2(x, tx,) and Z(x, t,)-- cr(p) for Xn 0
and It/l=1. Let Ai(z) be the Airy function of the first kind and set
A+/-(z) e-/Ai(e;-’/z), which appear in the diffractive case. We then
use, as in [2], the Airy function Ao(z)=A/(z)+A_(z). It is known
that Ai(z) solves Ai"(z)=zAi(z), is an entire function, real valued for
real z, and has its zeros only on the negative real axis. Besides,
Ai(O)O, Ai’(O)O and Ai(z)+coAi(wz)+coAi(coz)-O, where (o=e(/).

Furthermore, for Izl}l and --argz, Ai(z)=z-1/’e-(V)’Z(z)and
"(z),--..,oaZ -(3/2)’, where a are real and ao=(2,/--) -1. Therefore
we have Ao(z)=Ai(--z), A_(z)=z-/e+/-(/):(z) and +_(z)e/

:0 (+--i)az-(/’) for Izll and --+_zr/3arg zr+__z/3.
Now let x be the canonical transformation defined by

t,,(x’, 0, r/), ’=t,(x’, 0, z/) and (y’, r/)=(x’, ’). Then, under the in-
verse f of 1, the gliding ray F(’, ’) is exactly (and locally) mapped
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onto the straight line, through (y’, y’)=;(’, ’), which is parallel to
the Y0 axis and on which Y0 increases as x0 does. Hereafter we write
Y’=(Y0, Y")e R R-. Bearing this in mind, we seek Go in the orm
( 7 Govo GqVo+ GqVo.
Here q(Yo), q(Yo) are cutoff unctions such that q/q= 1 and Ro(x’, ’)
=/=0 on N0 (supp q). In act, when (3) is satisfied, we take q--0,
while if this is violated then Gq.Vo is an additional term, needed only
to assure that Vo(y’)e H(R {Y0Y0}). Moreover, or ]=1, 2, G are
o.f the orm"

( 8 (Gw)(x)--.I e(Ao()(-iA’o())(A/()-
+A0()-( ;)) (]’)d’.

Here

v(’) J e- ’’w(y’)dy’, 1/3

r being a positive number which is taken large enough, (x, V’) is an
almost analytic continuation o.f p(x, ’) with respect to a such that
t(x’, 0, ’)= for I]’11, and , and/ are also defined analogously.
(See [2].) The a(x, ’), b(x, ’) are smgoth m m mtrices, defined on
a conic neighborhood of (, 7]’), which have the asymptotic expansions

a ,;70 a, b -0 b. Here a(x, ’), b(x, ’) are homogeneous
in ]’ of degree k, k--l/3, respectively, and if we write

e-P(x, D){e(Ao(p)a--iA(p)b)}-- Ao(p)c--iA’o(p)d,
c -],; c, d;d, where c(x, ’), d(x, ’) are homogeneous
in ]’ o degree k, k--l/3, respectively, then c=0 or p_O, c--O(x)
as x-/0 or a0, I]’1=1, and so are d. Such a, b have been con-
structed in [5], 3 and 4, so that a0=Wg0
Wgo, where we have set Wo(x, 0+_ / Ppx)= W(x, ’)+_ / p-W(x, ’) and
go(x, ’), ho(x, ’) are mm mtrices homogeneous in ’ of degree 0,
--1/3, respectively. Moreover )(]’) is a cutoff unction such that

Ao(l’l/):/=O on supp 1-;. More precisely, let z(t)e C(R) be a

unction, supported in t3/2, such that Z(t)--1 or t2 and Z’(t)0.
Let to be a positive number such that Ao(t)O or t3t0. We then set
(’)=Z(al’lv/to). It should be pointed out that another cutoff unc-
tion (]’)=(a I]’1) with 0el/2 is adopted in [2] and that (A/Ao)()
(1-;(]’)) belongs only to a bad class

In what ollows we consider only the more difficult case where (3)
is violated and concentrate our attention on the equation BGV]n:o--f.
Noting that (--O)(x’, O, ’) e S.o, we denote by the Fourier integral
operator wih phase unction 0(x’, 0,/)--y’/ and with amplitude
e(-)’,,’). Lt be an elliptic Fourier integral operator with the
canonical transformation : such that [ and are the iden-
tities md OPS,. Suppose x=0 and (x’, $’)=(y’, ’). We then have
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9 ) -G d(1+ L;q) +_, ]= 1, 2,
where de, bj e OPS,o and (y’, ]’)=aj0(x, /), bj(y’, ’)--’/bo(X, ’)
mod S. Moreover L, are the following Fourier multipliers defined

by (Lw)(’)=L(’)(’) and so on, where L(’)--(A_/A+)(), =(K+ +
KL)+Ko(1--), K(’)=--i’-/(A/A)() and Ko(’)=--i’-/
(A/Ao)(). To derive precise estimates or these we set
and denote constants independent o r by C and so on. Suppose
>1. We then have

’ (1 ’The analogous estimates a]so hold or K+ and Ko if a>0 and
3o, respecLively. In parLieu]ar, K_, K+Z and Ko(1--Z) belong

S/,o. We ave also
[aoa,,L(v)I<C,r (l+O(I 1-’/9) for

Furthermore, setting l(’)=L(’)e(/’, we obtain

l(v’)=ie- "(1 +O(-/)) for l"> 1.

Therefore (L(1--Z)Z,)(’) S/,o and LX is a Fourier integral operator
with amplitude (/Z)(’) S_,o and with the following singular can-
onical transformation"

(y’, v’)=(yo+2J (1-(1/3)), y"-(2/3)/"/l’l, ),
which is similar to (3.33) in [2].

Now, applying 1 to BGv=f, from (6) through (9) we have

Here ;BGo BG,ql+BGqand :BG e(1 + LZ,) +d, where
e, OPS,o and, mod S:, e(y, ) B(x)a o(X, v’), v’)
B(x)bo(X, ). According to (H) and (H), one can take a positive
number 3 such that, for =0, Ro(x, )0 if yo.Yo--23 and Ro(x, )=0
if Yo)Yo-- and m12. We then take q,, q so that q,(y0)=l for Yo>Yo
--6 and q(y0)=l for yo<Y0--73. By (4) we may also reduce (10), as
in [5], 5, to the following equation only or Vo"
(11) a(1 + LZ,)q,Vo + bq,Vo+ c(1 + LZ,)qVo+
where a, b, c and d OPS,o are m, X m, matrices. Besides, setting

ta a’ b bl’ Vo= v
and fo=

f
where al, b, v and fi are scalar, and denoting by a(y’, ’) the prin-
cipal symbol o a and so on, we have, for yo.Yo--36, a(y’, V’)=O(a),
a(y’, V’)=O(a), a(y’, V’)=I,_ and b(y’, ’)=1. Hereafter I stands
or the identity matrix o degree k. Moreover by virtue o (H) we

can assume arg a(y’, ’)c[--/2, (-3)/2] or a-0. Furthermore
(H) yields, as in [11], p. 540, that, for yo.Yo--46, d(y’, ’)-0(), a(y’, ’)
=I+O(a), c(y’, ’)=I, and that Re a(y’, V’)-’ is positive definite for
a=0 and yo--Yo--23. Finally, when m2, (H) implies that a(y’, ’)
=O(a) or Yo)Yo--6.
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Now, a basic a priori estimate for (11) is the following"

’VolsClv-1117"-Ifo I+O(l-lvol2s_l)
for r>l and Vo e Hs/l/(Rn) with supp z)0(i’)c(r’((1}. To prove this
we use also

Re (v, (1 +L)v)Cr(]]v + -/(1--Z)v 5/)--O(v [:_/)
or v e L(Rn) with supp c(ra((1}, where C0. To deduce the
regularity near the hyperbolic region we need the following a priori
estimate. Suppose p(y’, ’) e S,o, 0 p(y’, ’) g 1 and p (y’, ’)g
p(y’, ’). Then

for r>>l and voeH+/(Rn) such that supp 9oC{[’]-a<<r-} and
WF(vo)C(yo>Yo-3}, where o=1/2-(3/4) and C is a positive number
independent of p. Furthermore to conclude that Vo H(R {Yo<<Yo}),
where Vo is a solution of (11), we use the following: Let f(y’)be a
distribution in R, supported in a compact set cR{y00}. Then
(l+L)-(1--Z)ZfeH(Rn{yo--}) for any 0. It should be
pointed out that (I+L)-(1--)Z belongs only to a bad class OPS(
and hence does not have the pseudolocal property.
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