85. Extended Epstein's Zeta Functions over CM-fields*)

By Hirofumi Ishikawa
Department of Mathematics, College of Arts and Sciences, Okayama University
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1984)

1. Introduction and statement of the results. The purpose of this note is to establish a relation between a series which derives from totally positive definite binary quadratic forms of discriminant Δ over a totally real algebraic number field F and Dedekind's Zeta function of $C M$-field $F(\sqrt{ } \Delta)$. In the case of Q, it has been done in [6, §4].

Let F be a totally real algebraic number field of degree n, \mathfrak{o}_{F} the ring of integers in $F, U_{F^{r}}$ the unit group of $\mathfrak{o}_{F^{F}}$ and $\Gamma=P S L_{2}\left(\mathfrak{o}_{F^{\prime}}\right)$. We assume the class number of F will be one in narrow sense. For any totally negative element Δ in \mathfrak{o}_{F}, denote by K the totally imaginary quadratic extention $F(\sqrt{ } \Delta)$ over F. Let Φ be the set of totally positive definite binary quadratic forms of discriminant Δ with \mathfrak{o}_{F}-coefficients. We consider Γ operates on Φ by

$$
{ }^{\sigma} \phi(x, y)=\phi(\alpha x+\gamma y, \beta x+\delta y), \quad\left(\sigma=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\right)
$$

We define

$$
\text { (1) } \quad \zeta(s, \Delta)=\sum_{\phi \in \Phi / \Gamma(\mu, \nu) \in X / \Delta u(\phi)} N_{F}(\phi(\nu,-\mu))^{-s} \quad(\operatorname{Re}(s)>1) .
$$

Here, $X=\left\{\mathfrak{o}_{F} \times \mathfrak{o}_{F}-(0,0)\right\} / U_{F}$, Aut $(\phi)=\left\{\sigma \in \Gamma ;{ }^{\sigma} \phi=\phi\right\}$. Then $\zeta(s, \Delta)$ converges absolutely if $\operatorname{Re}(s)>1$, and uniformly if $\operatorname{Re}(s) \geqq 1+\varepsilon(\varepsilon>0)$. So $\zeta(s, \Delta)$ is a holomorphic function in that region. It has been known from [3], [6] that $\zeta(s, \Delta)$ can be continued meromorphically to the whole plane and has a simple pole at $s=1$ because the first summation of (1) is a finite sum. We denote by D the discriminant of K over F, and by Δ_{0} a totally negative integer such that $\left(\Delta_{0}\right)=D$. For a prime ideal \mathfrak{p}, put $\alpha_{\mathfrak{p}}=(1 / 2)\left(\operatorname{ord}_{\mathfrak{p}}(\Delta)-\operatorname{ord}_{\mathfrak{p}} D\right)$ and $\nu_{p}=\operatorname{ord}_{\mathfrak{p}} D$. For an even prime ideal \mathfrak{p}, let e_{\Downarrow} be the ramification index of \mathfrak{p} in F. If \mathfrak{p} ramifies in K, we define a non-negative integer k_{p} by
$\max \left\{0 \leqq k_{p} \leqq\left(\nu_{p} / 2\right)+1 ; x^{2} \equiv \Delta_{0} \bmod \mathfrak{p}^{2 e_{p}+2 k_{p}}\right.$ is solvable for $\left.x \in \mathfrak{o}_{r^{\prime}}\right\}$,
otherwise, we put $k_{p}=0$. We say Δ is exceptional if $k_{p} \geqq 1$.
Theorem. For a non-exceptional Δ, if $\alpha_{p} \geqq 0$ for all \mathfrak{p}, we have

$$
\begin{equation*}
\zeta(s, \Delta)=\zeta_{K}(s) \sum_{\mathfrak{n} \mid \mathfrak{\dagger}} \mu(\mathfrak{n}) \chi_{\Delta}(\mathfrak{n}) N_{F^{\prime}}(\mathfrak{n})^{-s} \sigma_{1-2 s}(\uparrow / \mathfrak{n}), \tag{2}
\end{equation*}
$$

[^0]otherwise $\zeta(s, \Delta)=0$.
Here $\zeta_{K}(s)$ is Dedekind's zeta function of $K, \mathfrak{f}=\prod_{\nu} \mathfrak{p}^{\alpha_{\nu}}, \mathfrak{n}$ runs over all divisors of $\mathfrak{f}, \mu(\mathfrak{n})$ is Möbious' function over $\mathfrak{o}_{F}, \sigma_{s}(\mathfrak{n})=\sum_{\mathrm{ml\mid n}} N_{F}(\mathfrak{m})^{s}$ and $\chi_{\Delta}(\mathfrak{n})$ is the character attached to K over F.

Using the functional equation of $\zeta_{K}(s)$, we have
Corollary. For a non-exceptional Δ with all $\alpha_{\psi} \geqq 0$, we have a functional equation

$$
\begin{equation*}
\Lambda(s, \Delta)=\Lambda(1-s, \Delta) \tag{3}
\end{equation*}
$$

where
(4)

$$
\Lambda(s, \Delta)=\gamma(s, \Delta) \zeta(s, \Delta),
$$

(5)

$$
\gamma(s, \Delta)=(2 \pi)^{-n s} \Gamma\left(s,,^{n}\left(\left|N_{F}(\Delta)\right| D_{F}^{2}\right)^{s / 2},\right.
$$

D_{F} is the discriminant of F.
Remark. For an exceptional Δ, the theorem should receive slight modifications. For an even prime ideal \mathfrak{p}, the case $k_{p} \geqq 1$ occurs only if ν_{p} is an even number, say $\nu_{p}=2 m_{p}$. Put $\alpha_{p}^{\prime}=\alpha_{p}+\min \left(k_{p}, m_{p}\right)$ and $\chi_{\Delta}(p)=0$, -1 or 1 , according to $k_{p}<m_{p}, k_{p}=m_{p}$ or $k_{p}>m_{p}$. Besides, put $f^{\prime}=\prod_{p=\text { oven }} \mathfrak{p}^{\alpha_{p}^{\prime}} \times \prod_{p=\text { odd }} \mathfrak{p}^{\alpha_{p}}$. In this case, $\zeta(s, \Delta)$ vanishes unless $\alpha_{p}^{\prime} \geqq 0$ for all even prime ideals \mathfrak{p} and $\alpha_{p} \geqq 0$ for all odd prime ideals \mathfrak{p}. Then we have

$$
\begin{align*}
\zeta(s, \Delta)= & \zeta_{K}(s) \prod_{p}\left(1-\chi_{\Delta}(\mathfrak{p}) N_{Y^{\prime}}(\mathfrak{p})^{-s}\right)^{-1} \tag{6}\\
& \times \sum_{\mathfrak{n | F ^ { \prime }}} \mu(\mathfrak{n}) \chi_{\Delta}(\mathfrak{n}) N_{F^{\prime}}(\mathfrak{n})^{-s} \sigma_{1-2 s}\left(\mathfrak{F}^{\prime} / \mathfrak{n}\right),
\end{align*}
$$

where \mathfrak{p} runs over all even prime ideals such that $k_{p} \geqq m_{p}$.
2. The sketch of proof. Let Δ be non-exceptional and $\alpha_{p} \geqq 0$ for all \mathfrak{p}. We transform $\zeta(s, \Delta)$ in (1) to

$$
\begin{equation*}
\sum_{x \in X / \Gamma} \sum_{\phi \in \Phi / I_{x}} N_{F}(\phi(x))^{-s}, \tag{6}
\end{equation*}
$$

where Γ_{x} is the isotropy subgroup of x in Γ. Any Γ-orbit in Φ contains an element of type $(0, r) U_{F}\left(r \in \mathfrak{o}_{F}-\{0\}\right)$, therefore there is a one-to-one correspondence between Γ-inequivalence classes in X and integral ideals in \mathfrak{o}_{F}. For $x=(0, r) \in X$, the isotropy subgroup of x becomes

$$
\Gamma_{\infty}=\left\{\left(\begin{array}{ll}
\alpha & \beta \\
0 & \alpha^{-1}
\end{array}\right) ; \alpha \in U_{F}, \beta \in \mathfrak{o}_{F}\right\} .
$$

Then, Γ_{∞}-inequivalence classes in Φ consist of $\phi(x, y)=a x^{2}+b x y$ $+c y^{2}$ where a runs over all U_{F}-classes of totally positive elements in \mathfrak{o}_{F}, i.e., (a) runs over integral ideals, while b runs over all residue classes modulo ($2 a$) satisfying the congruence relation $b^{2} \equiv \Delta \bmod (4 a)$, (under these circumstances, c is uniquely determined by a, b). For an ideal \mathfrak{a} and for $(\Delta)=f^{2}\left(\Delta_{0}\right)$, denote by $r_{\Delta_{0}}^{*}(\tilde{f}, \mathfrak{a})$ the number of such residue classes, b satisfying the condition above. Then, we obtain

$$
\begin{align*}
\zeta(s, \Delta) & =\sum_{(r) \in \mathfrak{o}_{F}} \sum_{\phi \in \Phi \in \Gamma_{\infty}} N_{F}(\phi(0, r))^{-s} \tag{7}\\
& =\zeta_{F}(2 s) \sum_{\mathfrak{a} \subset \wedge_{F}} N_{F}(\mathfrak{a})^{-s} r_{山_{0}}^{*}(\mathfrak{f}, \mathfrak{a}) .
\end{align*}
$$

Therefore, we have only to calculate $r_{\Delta_{0}}^{*}(\mathfrak{f}, \mathfrak{a})$, which has a simultaneously multiplicative,

$$
\begin{equation*}
r_{0_{0}}^{*}(\mathfrak{f}, \mathfrak{a})=\prod_{p} r_{\Delta_{0}}^{*}\left(p^{\alpha_{p}}, \mathfrak{p}^{\beta_{p}}\right), \quad \text { if } \mathfrak{f}=\prod_{p} \mathfrak{p}^{\alpha_{p}}, \mathfrak{a}=\prod_{p} \mathfrak{p}^{\beta_{p}} . \tag{8}
\end{equation*}
$$

Now we investigate $r_{\Delta_{0}}^{*}\left(p^{\alpha}, \mathfrak{p}^{\beta}\right)$ for $\alpha \geqq 0, \beta \geqq 0$. When \mathfrak{p} is an odd prime ideal, we have Table I. When \mathfrak{p} is an even prime ideal, the calculations of $r_{d_{0}}^{*}\left(\mathfrak{p}^{\alpha}, \mathfrak{p}^{\beta}\right)$ are more complicated than in the odd cases. Readjusting them, we have Table II.

Among the results in these Tables, we obtain

$$
\left.\begin{array}{l}
\sum_{\beta=0}^{\infty} r_{\Delta_{0}}^{*}\left(\mathfrak{p}^{\alpha}, \mathfrak{p}^{\beta}\right) N_{F}(\mathfrak{p})^{-s \beta} \tag{9}\\
=\frac{1+N_{F}(p)^{-s}}{1-\chi_{\Delta}(\mathfrak{p}) N_{F}(\mathfrak{p})^{-s}}\left\{\begin{array}{l}
1-N_{F}(\mathfrak{p})^{(\alpha+1)(1-2 s)} \\
1-N_{F}(p)^{1-2 s}
\end{array}\right. \\
\left.\quad-\chi_{\Delta}(\mathfrak{p}) N_{F}(\mathfrak{p})^{-s} \frac{1-N_{F}(\mathfrak{p})^{\alpha(1-2 s)}}{1-N_{F}(\mathfrak{p})^{1-2 s}}\right\}
\end{array}\right\} \begin{aligned}
& 1+N_{F}(\mathfrak{p})^{-s} \\
& =\frac{1-\chi_{\Delta}(\mathfrak{p}) N_{F}(\mathfrak{p})^{-s}}{} \sum_{i=0}^{\infty} \mu\left(\mathfrak{p}^{i}\right) \chi_{\Delta}\left(\mathfrak{p}^{i}\right) N_{F}\left(\mathfrak{p}^{i}\right)^{-s} \sigma_{1-2 s}\left(\mathfrak{p}^{\alpha}{ }^{i}\right) .
\end{aligned}
$$

Then, we get (2) from (7), (8), (9).

Table I

ν_{p}	β	$r_{d_{0}}^{*}\left(p^{\alpha}, p^{\beta}\right)$
$\nu_{\nu}=0$	$\beta \leqq 2 \alpha$	$N_{F}(\mathfrak{p})^{[/ / 2]}$
$\nu_{p}=0$	$\beta>2 \alpha$	$\left(1+\chi_{d}(\mathfrak{p})\right) N_{F}(\mathfrak{p})^{\alpha}$
$\nu_{p}=1$	$\beta \leqq 2 \alpha+1$	$N_{F}(\mathfrak{p})^{[/ \beta / 2]}$
$\nu_{p}=1$	$\beta>2 \alpha+1$	0

[x] being Gaussian Symbol.)

Table II

	β	$r_{\lambda_{0}}^{*}\left(\mathfrak{p}^{\alpha}, p^{\beta}\right)$
ν_{p}	β	
$\nu_{p}=0$	$\beta \leqq 2 \alpha$	$N_{F}(\mathfrak{p})^{[\beta / 2]}$
$\nu_{p}=0$	$\beta>2 \alpha$	$\left(1+\chi_{\Delta}(\mathfrak{p})\right) N_{F}(\mathfrak{p})^{\alpha}$
$\nu_{p} \geqq 2$	$\beta \leqq 2 \alpha+1$	$N_{F}(\mathfrak{p})^{[\beta / 2]}$
$\nu_{p} \geqq 2$	$\beta>2 \alpha+1$	0

Remark. When Δ is exceptional, we use α_{p}^{\prime} instead of α_{p} and modified $\chi_{\Delta}(\mathfrak{p})$ for even \mathfrak{p}, to get (6).

References

[1] Asai, T.: On a certain function analogous to $\log |\eta(z)| . \quad$ Nagoya Math. J., 40, 193-211 (1970).
[2] Hirzebruch, F. and Zagier, D.: Intersection numbers of curves on Hilbert modular surface and modular forms of Neben types. Invent. math., 36, 57-113 (1976).
[3] Konno, S.: On Kronecker's limit formula in a totally imaginary quadratic field over a totally real algebraic number field. J. Math. Soc. Japan, 17, 411-424 (1965).
[4] Moreno, C. J.: The Chowla-Selberg formula. J. Number Theory, 17, 226245 (1983).
[5] Selberg, A. and Chowla, S.: On Epstein's zeta-function. J. Reine Angew. Math., 227, 86-110 (1967).
[6] Tamagawa, T.: On some extensions of Epstein's Z-series. Proc. International Symposium on alg. number theory, Tokyo-Nikko, pp. 259-261 (1955).
[7] Zagier, D.: Modular forms whose Fourier coefficients involve zeta-functions of quadratic forms. Lect. Notes in Math., vol. 627, Springer, pp. 105-169 (1977).

[^0]: *) This work was started by the author while visiting at The University of Washington, Seattle, U.S.A.

