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1. Introduction and statement of the results. The purpose
this note is to establish a relation between a series which derives
rorn totally positive definite binary quadratic forms of diserirninant
/ over a totally real algebraic number field F and Dedekind’s Zeta
function of CM-field F(//). In the ease of Q, it has been done in
{6, 4].

Let F be a totally real algebraic number field of degree n, o, the
ring of integers in F, U, the unit group of , and F--PSL(o,,). We
assume the class number of F will be one in narrow sense. For any
totally negative element in o,, denote by K the totally imaginary
quadratic extention F(//) over F. Let q be the set of totally positive
definite binary quadratic forms of discriminant with o-coefficients.
We consider F operates on q) by

(x, y) (x+’y, x+y), -We define
1 (s, /)-- , , NF((,, _/))-8 (Re (s)>l).

Here, X-=-{oFo,-(O,O)}/U., Aut()--{aeF;-}. Then (s,/_/)
converges absolutely if Re (s)l, and uniformly if Re (s)l/s (e)0).
So (s, ) is a holomorphic function in that region. It has been known
from [3], [6] that (s, 3) can be continued meromorphically to the whole
plane and has a simple pole at s-1 because the first summation of (1)
is a finite sum. We denote by D the discriminant of K over F, and
by 30 a totally negative integer such that (20)--D. For a prime ideal
p, put cr=(1/2)(ord(3)-ordD) and ,-ordD. For an even prime
ideal p, let e, be the ramification index of p in F. If p ramifies in K,
we define a non-negative integer k, by

max {0k,(,/2)+1; x--/0 mod p,+, is solvable for x e o,},
otherwise, we put k,-0. We say is exceptional if

Theorem. For a non-exceptional , if c,O for all p, we have
( 2 (s, 3)-(s) /(n)Z(n)N,,(n)-sa_(/n),
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otherwise g(s, )= O.
Here g(s) is Dedekind’s zeta function of K, {= p% n runs over

all divisors of , [() is M6bious’ function over
and Za(n) is the character attached to K over F.

Using the functional equatian of g(s), we have
Corollary. For a non-exceptional with all %0, we have a

functional equation
( 3 A(s, )-A(-s, ),
where
4 A(s, )=(s, )(s, ),

( 5 (s, )=(2)-F(s)([N,()] D.)/,
D, is the discriminant of F.

Remark. For an exceptional , the theorem should receive slight
modifications. For an even prime ideal p, the case ko>l occurs only
if v is an even number, say v=2m. Put ’=+min(k, m) and
Z(p)--0, --1 or 1, according to k<m,, lc,=m, or k,>m,. Besides, put

’= p; X , d P’. In this ease, (s, A) vanishes unless a’0 for
all even prime ideals p and a,0 for all odd prime ideals p. Then we
have
6 (s, A)=(s) (1--Z(O)N,(O)-)

where p runs over all even prime ideals such that :,m.
2. The sketch of proof. Let A be non-exceptional and %0 for

all . We transform (s, A) in (1) to
(6) N,((x))-,

X/F /I’x

where F is the isotropy subgroup of x in F. Any F-orbit in con-
tains an element of type (0, r)U,, (r o,-{0}), therefore there is a
one-to-one correspondence between F-inequivalence classes in X and
integral ideals in o,. For x=(0, r) X, the isotropy subgroup of x
becomes

Then, F-inequivalenee classes in consist o O(x, y)=ax+bxy
+cy where a runs over all U-elasses of totally positive elements in
o., i.e., (a) runs over integral ideals, while b runs over all residue
classes modulo (2a) satisfying the congruence relation b--A mod (4a),
(under these circumstances, c is uniquely determined by a, b). For
an ideal and for (A)=i(Ao), denote by ri(, a) the number o such
residue classes, b satisfying the condition above. Then, we obtain
( 7 (s, )= N((0, r))

(r)

=,(2s) N,()-Sr(, ).
F
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Therefore, we have only to calculate r*o(, ), which has a simul-
taneously multiplicative,
( 8 ) r(, a)= ]-[ r(V, 0), if = V, = ..

Now we investigate r(p, ) for a0, fl0. When p is an odd
prime ideal, we have Table I. When p is an even prime ideal, the
calculations o r(, ) are more complicated than in the odd cases.
Readjusting them, we have Table II.

Among the results in these Tables, we obtain

( 9 r(, p)N(p)-=0

1 --)-; [ 1 Y(p)
1 N(p)(’-)

1 --NF(O)i-zs

1 + N()

Then, we get (2) from (7), (8), (9).

Table I

r(V, )

,,=0 fl<2c N(O)E/2

=0 2a (1 +Z(o))N(O)
=1 2+1 N(p)/

=1 >2a+l 0

(Ix] bein Gaussian Symbol.)

Table II

Remark. When A is exceptional, we use #, instead of , and
modified X(p) for even p, to get (6).
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