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1. We shall use the following notations. For an algebraic num-
ber field %, the discriminant, the class number, the ring of integers
and the group of units are denoted by D(k), h(k), @, and E, respec-
tively. The discriminant of an algebraic integer 7 ¢ k will be denoted
by D,(r) and the disecriminant of a polynomial h(x) € Z[x] by D,.

The purpose of this note is to show the following theorem.

Theorem. Let K=Q(), Irr (0 ; Q)= f(x)=a*—ma*—(m+3)x—1,
mz=11 and 3fm. Suppose 2m+3=a" for some a,n € Z with a,n>1.
If there exists a prime factor q of a satisfying the conditions:

(i) 8 is not a quadratic residue mod q if 2|n,

(ii) 2 1s not an I-th power residue mod q and 3 is an l-th power
restdue mod q for any odd prime factor l of n. Then we have n|h(k).

This theorem has the following corollary (cf. Theorem 1 in [1]).

Corollary. For any positive integer n>1, there exist infinitely
many cyclic cubic fields whose class numbers are divisible by n.

2. Throughout in the following, we shall consider the fields
K=Q®), Irr (0; @)= f(®)=2*—~ma*—(m+3)xr—1, m>1 and 3m.

It is easy to see that K/Q is cubic cyclic and consequently totally
real, because of vV D,=m*+3m+9 ¢ Z, and that the roots of f(x) can
be denoted by 6, ¢, 6" so that they are situated as follows:

(1) —1-tepca-1l S lopa land mp1<o<mte.
m m m

It is also easily verified that 6+1=—1/6" (cf. Corollary in [4]).

Now we state two propositions which are utilized in the proof of
our theorem.

Proposition 1. Any prime factor q of 2m—+3 decomposes com-
pletely in K/Q as follows:

Q0x=0q9'q", q=0—-1, )0, «=0+2, 90k q'=0—m—1, )0k,

where ¢, q"" are conjugate prime ideals of q.

Put E,=(£1>x0,0+1). As 6+1=-—1/¢, and 6,0 are inde-
pendent units, we have (E,: E)<oo.

Proposition 2. We have

(I) ((Eg:Ey),2)=1,

(II) Moreover, suppose 2m+3=a" for some a, n € Z with a, n>1.
If there exists a prime factor q of a such that 2 is not an l-th power
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residue mod q and 3 is an I-th power residue mod q for any odd prime
factor 1 of n. Then we have (E,: E,), )=1.

3. Proof of Proposition 1. Clearly (g, 6)=1, since q|2m+3 and
3ym. As f(@)=(@—-D(@+2)(x—m—1) (mod 2m+3) and q|2m+3, we
have
(2) J@)=@—-D@+2)(x—m—1)  (mod q),
and any two of 1, —2, m+1 are not congruent mod ¢ in virtue of ¢=:3.
Let D (0)=7(0)"D(K). Then we can easily verify that ((6), ¢9)=1. See
the proof of Theorem A’ in [5]. Hence we have ¢O;=0q,q.q;, Where
Q1:(0_1, OO0k, 0,=004+2, )0k, and gp=0—m—1,)0,. Put q=q,
then we have immediately g,=q" and gq,=q”, because of §+1=—1/¢".

Proof of Proposition 2. (1) Suppose 2|(E.: E,), then there ex-
ists 0 € O satisfying *=+60%(6+1)°, 6 & E,, where a, b € {0, 1}, so that
we have 8*=0%(0+1) as m+1<# and ¢ € R. It is clear that (a, b)
(0, 0) in virtue of 6 & E,. If (a,b)=(1, 0), then we have §*=6, which
yields 0*+1=6+1 and §,6+1e E,. This contradicts to Theorem B
in[8]. If (a, b)=(0, 1), then we have §*=60+1 so that we have 0N 40"
=Nyo(0+1)=—1, which is a contradiction. The case (a,b)=(1,1)
can not take place, as N q0° >0, Ny o@+1)=—1 and Ng,0=1.

(II) Let ! ke an odd prime factor of n. Suppose I|(E,: E)), then
there exists p € Ex such that p'=6°(+1), p & E,, wherec,de{0,1, - - -,
1—1}. Itisclear that (¢, d)=(0,0)as p ¢ E,. If ¢=0, d=0, then we have
o'=0°, which implies p{+1=60+1 and p, §+1¢e E,. This contradicts
to Theorem B in [3]. If ¢=0, d=0, then we have pi—1=6 and p,, ¢
e Ey, also contradicting to Theorem B in [3]. If ¢2:0, d=:0, then we
have p'=2? (mod q) in virtue of =1 (mod q) in Proposition 1. This
contradicts to our hypothesis on 2. Thus we obtain (E,: E,), [}=1.

4. Proof of Theorem. We shall first show that (§—1)O, can not
be a square of any principal ideal in ©,. In fact, suppose (0—1)O
= (@) for some « € O, then we have §—1=+¢,a* for some ¢ € E,
which yields 6 —1=+60°(0+1)’«} in virtue of (I) in Proposition 2, where
e, f€{0,1}. In virtue of 1<m+1<¢ and aje R, we have 6—1=
6°(0+1)'ad. The case (¢, f)=(0,0) can not take place, as §<<—2 and
a,€ R. The cases (e, f)=(0,1) and (1, 1) can not take place in virtue
of 1) and &/, ¢, R. If (e, f/)=(1,0), then we have §—1=0«j, which
implies m=(m+1)a? (mod q”) in virtue of 6=m+1 (mod q”’) in Propo-
gition 1. Then we have 3=a2 (mod ¢”) in virtue of ¢q|2m+3, which
contradicts to the condition (i). Thus (—1)O, is not a square of any
principal ideal in O.

Next we shall show that (—1)O, can not be an I-th power of any
principal ideal for any prime number ! dividing ». In fact, suppose
O—1Ox=(B0O%)" for some prime number ! with l|n, then we have
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0—1=c¢,p" for some ¢, € B, so that we have —1=6(6+1)'8;, where
Boe Ok, 1,7€{0, ---,1—1}, in virtue of (II) in Proposition2. The case
@z, 7)=(0, 0) can not take place in virtue of Theorem B in [3]. Thus
we have (4, 7)=:(0, 0). If ¢2:0, then we have 3=2!8! (mod ¢’) for some
B € Ok in virtue of 6—1=0'(0+1)’; and 6=—2 (mod ¢’). This con-
tradicts to the condition (ii). If 70, then we have m=(m+1)'(m +
2)/B5 (mod q”’) in virtue of §=m+1 (mod g”), so that we have 2¢+7-'3
=p; (mod ¢”) in virtue of ¢|2m+3. If i+7—1x0 (modl), then we
have a contradiction in virtue of the condition (i). If ¢+/7—1=0
(mod 1), then we have 6—1=6'-/(§+1)/p; for some B, € O, which yields
0—1=60(—1/60')8} in virtue of §+1=—1/6¢, so that we have (6—1)/0
=0"'8, for some B, € O as 60'¢’=1. Then we have 3=2'-75; (mod q’)
for some B; € O in virtue of ¢’ +1= -1/ and 6= —2 (mod q’). This
is a contradiction for 71 in virtue of the condition (ii). If j=1, then
we have =0 in virtue of i4j—1=0 (mod l), so that we have §—-1=(@
+1)A; in virtue of 6—1=6(0+1)'8i. Then we have —2/(0+1)=p—1.
Using the fact that |z*—1|=max (|z|, 1)""*||2[f—1| for any ze€ C and
n e N with n=2, we have | —2/(@+1)|=|gi—1|=max (|}, 1)""2||[*—1].
As K/Q is totally real, we have |f;=(|5,|')* for any o€ Gal (K/Q)=G,
so that we have

(3) 23=al;[G \(—2/(0+1>>"\zaga {max (871, 1)“2}'09(; 185 [F—1]

=2m 41DV N g0 B =D,
as |By/|'>2m+1 in virtue of —1—-(1A/m)<¢’<—-1—(@1/m?*. Clearly
B —1eOx and [B[—1=20. Let >3, 1Bl =A, 23 Bl 1Bl”" ' =B,
NiqlBol=C.

I£ | N .0 80— 1)|=1, then we have|B,|—1=c € E, Nyl — D= %1
and No(B|+1D==+1. Let >3i  e'=E, >3} ¢'%""'=F. Then we
have (4, B)=1—-C, —1) or (—C,0) or (—C, —2) or (—1—-C, —1), and
we have A=2F+3, B=2E+F4+3, C=E+F +1, which implies a con-
tradiction. If|N,(B,F—1)|=2, then we have A ¢ Z, which contradicts
to AeZ. Hence we have |N,(8,F—1)|=3. Then (3) is impossible
for m=11 and odd prime number [. Thus (#—1)O, is not an [-th
power of any principal ideal.

In virtue of Ny (0—1)=Ny;(0+2)=Ny (0 —m—1)=2m+3=a"
and Proposition 1, we have (0 —1)O=a" for some ideal a in O. Then
the order of the ideal class of a should be just n, since (0—1)O, is no
power of any principal ideal for any prime number ! with [|n. The-
refore we obtain n|h(k) and the proof is completed.

5. Proof of Corollary. We see that there exist infinitely many
prime numbers q satisfying the conditions (i) and (ii) in Theorem, in
virtue of dengity theorem. Choose a such that ¢ has a prime factor
q satisfying the conditions (i) and (ii) in Theorem and ¢=2,3. Put
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m=(a"—3)/2 for any given n>1 and let # be any root of x*—ma*—
(m+3)x—1=0. Then K=Q(0) is a cyclic cubic field which has a class
number divisible by n.
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