83. α-additive Functions and Uniform Distribution modulo One

By Hitosi Kawai
Institute of Mathematics, University of Tsukuba
(Communicated by Kunihiko Kodarra, m. J. A., Oct. 12, 1984)

1. Throughout this note, we write $e(x)=e^{2 \pi i x}$ for real x and denote by N_{0} the set of all nonnegative integers. Let α be an irrational number and $\left[a_{0} ; a_{1}, \cdots, a_{k}, \cdots\right]$ be the continued fraction expansion of α. The sequence $\left\{q_{k}\right\}$ of denominators of convergents for α satisfies

$$
q_{0}=1, q_{1}=a_{1} \quad \text { and } \quad q_{k+2}=a_{k+2} q_{k+1}+q_{k} \quad \text { for all } k \in N_{0} .
$$

Every nonnegative integer can be written in the form

$$
n=\sum_{k=0}^{\infty} \varepsilon_{k}(n) q_{k},
$$

where

$$
\begin{aligned}
& \varepsilon_{0}(n) \in\left\{0,1, \cdots, a_{1-1}\right\}, \\
& \varepsilon_{k}(n) \in\left\{0,1, \cdots, a_{k+1}\right\},
\end{aligned}
$$

and for $k \geqq 1 \varepsilon_{k-1}(n)=0$ whenever $\varepsilon_{k}(n)=a_{k+1}$. This representation is unique.

Definition. A function (or a sequence) $f: N_{0} \rightarrow \boldsymbol{R}$ is said to be $\alpha-$ additive if $f(0)=0$ and

$$
f(n)=\sum_{k=0}^{\infty} f\left(\varepsilon_{k}(n) q_{k}\right) .
$$

J. Coquet [1] showed that the α-additive sequence

$$
\left\{\sigma_{\alpha}(n)\right\}=\left\{x \sum_{k=0}^{\infty} \varepsilon_{k}(n)\right\}
$$

is uniformly distributed modulo one (abbreviated: u.d. mod 1) if and only if x is irrational. In this note, we prove the following theorem which gives a generalization of this result of J. Coquet's.

Theorem. Let $\phi: N_{0} \rightarrow \boldsymbol{R}$ be a function with $\phi(0)=0$. We set

$$
f(n)=\sum_{k=0}^{\infty} \phi\left(\varepsilon_{k}(n)\right) .
$$

If $\phi(1)$ is irrational and the sequence $\{\phi(n)\}_{n \in N_{0}}$ is $u . d . \bmod 1$, then the sequence $\{f(n)\}_{n \in N_{0}}$ is u.d. $\bmod 1$.

Immediate consequences of this theorem will be the following:
Corollary 1. Let $\left\{a_{k}\right\}$ be an unbounded sequence, and $\phi(n)$ and $f(n)$ be the functions given in the theorem. If $\{\phi(n)\}$ is $u . d . \bmod 1$, then $\{f(n)\}$ is u.d. $\bmod 1$.

Corollary 2. Let $\left\{a_{k}\right\}$ be a bounded sequence, and $\phi(n)$ and $f(n)$ be as in the theorem. If $\phi(1)$ is irrational, then $\{f(n)\}$ is u.d. $\bmod 1$.

Corollary 3. Let $\left\{a_{k}\right\}$ be bounded and assume that $a_{k} \geqq 3$ for infinitely many k. Let $\phi(n)$ and $f(n)$ be as in the theorem. If $\phi(1)$ is rational and $\phi(2)$ is irrational, then $\left\{f(n)+x \sigma_{\alpha}(n)\right\}$ is u.d. $\bmod 1$ for any real x.
2. We set

$$
\mu_{k}=\frac{1}{q_{k}} \sum_{n<q_{k}} e(f(n))
$$

To prove our theorem, we need the following lemma due to J. Coquet [1].

Lemma. Let $f(n)$ be an α-additive function. Then

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n<N} e(f(n))=0
$$

if and only if $\lim _{k \rightarrow \infty}\left|\mu_{k}\right|=0$.
Proof of Theorem. Now, $f(n)$ being assumed to be α-additive, we have

$$
\begin{aligned}
\mu_{k+1} q_{k+1} & =\sum_{b<q_{k}} \sum_{a<a_{k+1}} e\left(f\left(a q_{k}+b\right)\right)+\sum_{b<q_{k}} e\left(f\left(a_{k+1} q_{k}+b\right)\right) \\
& =\mu_{k} q_{k} \sum_{a<a_{k+1}} e(\phi(\alpha))+\mu_{k-1} q_{k-1} e\left(\phi\left(a_{k+1}\right)\right)
\end{aligned}
$$

for every integer $k \geqq 1$, and

$$
\begin{aligned}
\mu_{k+2} q_{k+2}= & \mu_{k+1} q_{k+1} \sum_{b<a_{k+2}} e(\phi(b))+\mu_{k} q_{k} e\left(\phi\left(a_{k+2}\right)\right) \\
= & \mu_{k} q_{k}\left(\left(\sum_{b<a_{k+2}} e(\phi(b))\right)\left(\sum_{a<a_{k+1}} e(\phi(a))\right)+e\left(\phi\left(a_{k+2}\right)\right)\right) \\
& +\mu_{k-1} q_{k-1} e\left(\phi\left(a_{k+1}\right)\right) \sum_{b<a_{k+2}} e(\phi(b))
\end{aligned}
$$

for every integer $k \geqq 2$.
If we put

$$
M_{k}=\max \left\{\left|\mu_{k}\right|,\left|\mu_{k-1}\right|\right\} \quad \text { for } k=1,2, \cdots,
$$

then

$$
\begin{gather*}
\left|\mu_{k+1}\right|<M_{k}\left(\left|\sum_{a<a_{k+1}} e(\phi(a))\right| \frac{q_{k}}{q_{k+1}}+\frac{q_{k-1}}{q_{k+1}}\right)=M_{k} A_{k}, \quad \text { say }, \tag{1}\\
\left|\mu_{k+2}\right|<M_{k}\left(\left(\left.\left|\sum_{v<a_{k+2}} e(\phi(b))\right|\right|_{a<a_{k+1}} e(\phi(a)) \mid+1\right) \frac{q_{k}}{q_{k+2}}\right. \tag{2}\\
\left.\quad+\left|\sum_{0<a_{k+2}} e(\phi(b))\right| \frac{q_{k-1}}{q_{k+2}}\right)=M_{k} B_{k}, \quad \text { say. }
\end{gather*}
$$

It follows from (1) and (2) that

$$
\begin{equation*}
M_{k+2} \leqq M_{k} \max \left\{A_{k}, B_{k}\right\} . \tag{3}
\end{equation*}
$$

First we assume that $\left\{a_{k}\right\}$ is unbounded. Then there is a strictly (and indefinitely) increasing sequence $\left\{a_{k_{j}}\right\}$ of $\left\{a_{k}\right\}$ and we have for this sequence $\left\{a_{k_{j}}\right\}$

$$
A_{k_{j}-1} \leqq \frac{1}{a_{k_{j}}}\left|\sum_{a<a_{k_{j}}} e(\phi(n))\right|+\frac{1}{a_{k_{j}}},
$$

and

$$
B_{k_{j}-1} \leqq \frac{1}{a_{k_{j}}}\left|\sum_{a<a_{k_{j}}} e(\phi(n))\right|+\frac{2}{a_{k_{j}}}
$$

It is easy to see from (1) that the sequence $\left\{M_{k}\right\}$ is decreasing, and so the limit

$$
c=\lim _{k \rightarrow \infty} M_{k}
$$

exists. Since by assumption $\{\phi(n)\}$ is $u . d . \bmod 1$, we must have $c=0$, by (3).

Secondly, we assume that $\left\{a_{k}\right\}$ is bounded. Let L be an upper bound of $\left\{a_{k}\right\}$. The case that $a_{k}=1$ for all sufficiently large k has been treated by J. Coquet [1], and therefore we may assume that there are infinitely many k such that $a_{k}>1$. We take a subsequence $\left\{a_{k_{j}}\right\}$ of $\left\{a_{k}\right\}$ such that $a_{k_{j}}=d>1$ where d is a number independent of k_{j}. Since $\phi(1)$ is irrational, we have

$$
\delta=d-\left|\sum_{n<d} e(\phi(n))\right|>0 .
$$

Then we find
and

$$
\begin{aligned}
B_{k_{j-1}} & \leqq\left(1+a_{k_{j}+1}\left(a_{k_{j}}-\delta\right)\right) \\
& \frac{q_{k_{j}-1}}{q_{k_{j+1}}}+a_{k_{j}} \frac{q_{k_{j-2}}}{q_{k_{j}+1}} \\
& =1-\frac{a_{k_{j}+1} q_{k_{j}-1}}{q_{k_{j+1}}} \delta<1-\frac{\delta}{(L+1)^{2}}
\end{aligned}
$$

which implies by (3) that the limit

$$
c=\lim _{k \rightarrow \infty} M_{k}
$$

satisfies

$$
c \leqq c\left(1-\delta(L+1)^{-2}\right)
$$

Thus we have $c=0$, and the proof is complete.
We would like to thank Prof. S. Uchiyama for a number of valuable comments.

Reference

[1] J. Coquet: Répartition de la somme des chiffres associée à une fraction continue. Bull. Soc. Roy. Sci. Liège, 51, 161-165 (1982).

