74. Dualizing with respect to s-tuples

By Sanpei Kageyama*) and R. N. Mohan**)
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1984)

1. Introduction. In a projective plane, if the roles of lines and points are interchanged, the dual geometry is obtained. Similar concept was introduced in a field of the design of experiments by Bose and Nair [1], who derived a new class of designs, by interchanging blocks and treatments in a given class of block designs. This concept of interchanging the roles of blocks and treatments is usually named as "DUALIZATION". We denote the dual of the design D by D_{1}^{*}. This dualization, that is, writing the block numbers of blocks in which a treatment occurs in the original design, is extended to another concept as writing the block numbers of blocks in which a pair of treatments occurs in the original design. This is named as "Dualization with respect to (w.r.t.) pairs", which is denoted by D_{2}^{*} for a given block design D, and is dealt with in Mohan and Kageyama [6]. In this note, the concept of dualization w.r.t. pairs is further generalized in the form as "Dualization w.r.t. s-tuples" for $s \geqq 1$. This dual design is denoted by D_{s}^{*}. Applying this technique to certain designs yields new block designs D_{s}^{*} for some values of s. For the description of some technical terms in designs, we refer the reader to Raghavarao [7].
2. Method. We here consider an equireplicated and equiblocksized design in which the number of treatments (with the replication number r) is v and the number of blocks (of size k) is b. The present method is as follows: Number the blocks of a given block design D. Now in D_{s}^{*} if the i-th block of D includes an s-tuple, then the corresponding block of D_{s}^{*} will have the i-th treatment of D_{s}^{*}. This D_{s}^{*} coincides with the known cases described in the introduction when $s=1$ and 2 .

For a given block design D with parameters v, b, r and k, it is obvious that its dual design D_{s}^{*} w.r.t. s-tuples, for $s<k$, is characterized by the parameters in the following form:

$$
\begin{aligned}
v^{\prime}= & b, b^{\prime}=\binom{v}{s}, r^{\prime}=\binom{k}{s}, \\
k^{\prime}= & \text { the number of times } s \text {-tuples of treatments occur in the } \\
& \text { original design, }
\end{aligned}
$$

*) Faculty of School Education, Hiroshima University, Japan.
**) D. A. R. College, India.
$\lambda^{\prime}=\binom{$ the number of treatments common to any two blocks }{$s}$.
Note that if the number of times s-tuples of treatments occur and the number of treatments common to any two blocks in the original design are not constant, then the values of k^{\prime} and λ^{\prime} are also varying.

We will deal mainly with a case of $s \geqq 3$ to give a new insight of this concept, because a case of $s=1$ is well-known as the usual dualization and there is some discussion in Mohan and Kageyama [6] when $s=2$. In particular, constructions of partially balanced incomplete block (PBIB) designs are here discussed a little to show some advantage of the present approach.
3. Statement. There are various kinds of block designs. Among them, we shall utilize a t-design as a starting block design. Properties of t-designs are discussed in many literature (cf. Hedayat and Kageyama [3], Kageyama and Hedayat [4], as survey papers). It is well known that for each $0 \leqq s \leqq t$ every $t-\left(v, k, \lambda_{t}\right)$ design is an $s-\left(v, k, \lambda_{s}\right)$ design with $\lambda_{s}=\lambda_{t}\binom{v-s}{t-s} /\binom{k-s}{t-s}$. Usually, we put $b=\lambda_{0}$ and $r=\lambda_{1}$ for symmetry of notation. As one of t-designs having a property suitable to our purpose, we have a class of quasi-symmetric t-designs. A t-design is said to be quasi-symmetric if any of its two blocks have either x or y common treatments, where $x \neq y$ (i.e., the number of treatments incident with two blocks takes just two distinct values).

Theorem. Dualizing a quasi-symmetric $t-\left(v, k, \lambda_{t}\right)$ design with the above x and y w.r.t. s-tuples yields, for $1 \leqq s \leqq t$, a 2-associate PBIB design D_{s}^{*} with parameters $v^{\prime}=b, b^{\prime}=\binom{v}{s}, r^{\prime}=\binom{k}{s}, k^{\prime}=\lambda_{s}$, $\lambda_{1}^{\prime}=\binom{x}{s}, \lambda_{2}^{\prime}=\binom{y}{s} ; n_{1}=[k(r-1)-y(b-1)] /(x-y), n_{2}=[x(b-1)-k(r-$ $1)] /(x-y)$, where $\binom{c}{d}=0$ if $c<d$.

Proof. The values of $v^{\prime}, b^{\prime}, r^{\prime}, k^{\prime}, \lambda_{1}^{\prime}, \lambda_{2}^{\prime}$, are obvious from the definition of the dualization w.r.t. s-tuples. The values of n_{1} and n_{2} follow from Corollary 2.1 of Shah [9]. Thus, the proof is completed.

Remark. If we let $x<y$, then $k(r-1)>(b-1) x$ and $k(r-1)<$ ($b-1$) y, which show that n_{1} and n_{2} in the theorem are positive. If the design is a linked block type (i.e., $x=y$), then $n_{1}=n_{2}=0$.
4. Some discussions. In the theorem, if $x=0$, it follows (cf. Shah [9]) that $y=\left(r-\lambda_{2}-k+k \lambda_{2}\right) /(r-1)$ ($=$ an integer), $n_{1}=b-1-$ $k(r-1)^{2} /\left(r-\lambda_{2}-k+k \lambda_{2}\right)$. Thus, if $x=0, v=n k$ for some integer n, and $b=v+r-1$, then we obtain $n_{1}=n-1$ and $y=k^{2} / v$. This observation implies that we can utilize an affine resolvable t-design as a starting quasi-symmetric block design in the theorem. In fact, an affine resolvable design has $x=0$. Available affine resolvable t-designs yield
some new PBIB designs. For example, Kimberley [5] showed that all resolvable $3-\left(v, k, \lambda_{3}\right)$ designs are affine resolvable if and only if they are $3-\left(4 \lambda_{3}+4,2 \lambda_{3}+2, \lambda_{3}\right)$ designs. In this case, they have other parameters as $b=2\left(4 \lambda_{3}+3\right), r=4 \lambda_{3}+3, \lambda_{2}=2 \lambda_{3}+1, x=0$ and $y=1+\lambda_{3}$. Hence the theorem yields three group divisible 2-associate PBIB designs (D_{1}^{*}, D_{2}^{*} and D_{3}^{*}) with parameters $v^{\prime}=2\left(4 \lambda_{3}+3\right)$ (the treatments consisting of $4 \lambda_{3}+3$ groups of 2 treatments each), $b^{\prime}=\binom{4 \lambda_{3}+4}{s}, r^{\prime}=$ $\binom{2 \lambda_{3}+2}{s}, k^{\prime}=\lambda_{s}, \lambda_{1}^{\prime}=0, \lambda_{2}^{\prime}=\binom{\lambda_{3}+1}{s} ; n_{1}=1, n_{2}=4\left(2 \lambda_{3}+1\right)$ for $s=1,2,3$. This is a new series of group divisible PBIB designs (semi-regular type for $s=1$, and regular type for $s=2,3$). As another illustration with $x>0$ and $y>0$ for the theorem, we can take an affine μ-resolvable t-design for $\mu \geqq 2, t=2$ and 3 , as a starting design. In this case, note that $x=k+\lambda_{2}-r$ and $y=k^{2} / v$, which yield a 2 -associate PBIB design.

If a t-design has m distinct block intersection numbers, our technique may produce PBIB designs D_{s}^{*} with at least m associate classes for each of integers s satisfying $1 \leqq s \leqq t$. For example, it is known (cf. Cameron [2], Ray-Chaudhuri and Wilson [8]) that in a nontrivial t-design there are at least α (or $\alpha+1$) distinct block intersection numbers for $t=2 \alpha$ (or $2 \alpha+1$), respectively, and in particular there are exactly α distinct block intersection numbers if and only if the 2α design is tight. So, a tight 2α-design yields a PBIB design with at least α associate classes. As an illustration, there exists a tight 4($23,7,1$) design with $x=1$ and $y=3$, which yields three 2 -associate PBIB designs. Incidentally, a nontrivial t-design may produce a PBIB design having at least α (or $\alpha+1$) associate classes for $t=2 \alpha$ (or $2 \alpha+1$), respectively.

References

[1] R. C. Bose and K. R. Nair: Partially balanced incomplete block designs. Sankhyā, 4, 337-372 (1939).
[2] P. J. Cameron: Near-regularity conditions for designs. Geometriae Dedicata, 2, 213-223 (1973).
[3] A. Hedayat and S. Kageyama: The family of t-designs-Part I. J. Statist. Plann. Inf., 4, 173-212 (1980).
[4] S. Kageyama and A. Hedayat: The family of t-designs-Part II. ibid., 7, 257-287 (1983).
[5] M. E. Kimberly: On the construction of certain Hadamard designs. Math. Z., 119, 41-59 (1971).
[6] R. N. Mohan and S. Kageyama: A method of construction of group divisible designs. Utilitas Math., 24, 311-318 (1983).
[7] D. Raghavarao: Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York (1971).
[8] D. K. Ray-Chaudhuri and R. M. Wilson: On t-designs. Osaka J. Math., 12, 737-744 (1975).
[9] S. M. Shah: A note on quasi-symmetric balanced incomplete block designs. Gujarat Statistical Review, 3, 20-22 (1976).

