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§0. Introduction. Consider a gauge field in the eight-dimen-
sional space satisfying
(1) [=2aV, 4V, 2V +V,;1=0, (=27, +V., AV, +V;1=0,

(—AV, +Ve, =2V, +V ]I=[—-2V, +V¢, 3V +V,1=0,
[21Vc1+l751, —227,72“‘752]:[11‘7;1‘}‘,7;71’ 22752"“,772]:0’
for any 2,2, C. Here (p, 71,8y L0 72 72§ §) € C° and V, ete. are
covariant derivatives. To the gauge fields satisfying (1) corresponds
a class of solutions of the Yang-Mills equations including all the self-
dual or anti-self-dual solutions, when they are restricted to the four-
dimensional subspace y,—7,=7,—7,={,—{,={,—{,=0 (cf. [1], [2]).

In our previous paper [2], we regarded (1) as the integrability
condition for some linear equations with a pair of spectral parameters
2 2,.  But in this paper, we note that the equations (1) imply
(2) [, +V;, W, +V,1=0, (-, +V., W, +V,1=0,

(=, +Ve, =V, +V )=[—W, +V;, W, +V,;]1=0,

W +V,, =, +V 1=V +V,, ¥, +V,1=0,
for any 1e C. (This system of equations is classified into the class
A, according to R. S. Ward [3].)

Therefore, the solution space of (1) is embedded in the solution
space of (2), and it is sufficient to solve the following problems:

(i) to construct the general solutions of (2) and clarify their
structure,

(ii) to characterize the solutions of (1) in the solution space of
2).

The problem (i) can be solved more simply than to investigate
directly the solution space of (1) which we did in cur previous paper
[2], because the equations (2) comprise only one spectral parameter.
In fact, we can solve them by direct application of Sato-Takasaki
method (cf. [4], [5], [6]): we rewrite (2) into a sysiem of differential
equations for unknown functions valued in an infinite-dimensional
Grassmann manifold and investigate the structure of its solution space
by considering an initial-value problem with respect to the subspace
51:ﬁ1=C2=7}2=0~

The problem (ii) also can be solved and a simple characterization
can be obtained. (See Theorem 3.)
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§ 1. General solutions of the gauge-field equations 4,. Through-
out this paper we discuss in the category of formal power series, so
that 7V, =4, +A,, A, egl, Clly, 7, - -+, L1 ete. The gauge-field
equations (2) imply [FV,,V,]1=0 for u, v=y,, {;, 9, {,. Therefore we can
“fix” the gauge, namely, restrict the freedom of gauge, so that A,
=A,=A,=A;,=0. Then (2) reads
(8) [0, 4V, 8, 4V,1=0,  [—28,+V,, 38,+V,]1=0,

[—20,+V, —23, +V ]=[-120, +V, 20,,+V;]1=0,
(20, +V,;, —29, +V =10, +V,, 20, +V,1=0 for any 2¢ C.
That is nothing but the integrability condition for the linear equations

(4) (—=29,,+V: Jw)=0, (20, +V, )w(2)=0,
(—20,,+V )w)=0, (A0, +7; )w(2)=0.
Proposition 1. A, A4,, A, A, €gl(®n, Clly, ---, L1 are solu-

tions of (8) if and only if there exists a solution w()=72;5, w,A~’ of
(4) such that w,=1, namely, if and only if there exist w; € gl (n, Clly,,
-+, &) which satisfy w,=1, w,=0 if j<0, and

(5) _—aqle+1+(afl+Ail)wj=O’ acle+l+(af_]l+Aﬁ1)wj=0’
—ar;2wj+l+(ac2+Ac2)wj=0’ a€2w1+1+(a;72+A72)wj=0
for any jeZ.

When j=0, (5) reads
(6) —0,w,+A,=0, o, w,+A,; =0,
-9, w,+4,=0, d;,w,+ A, =0.
Therefore, to solve the eqs. (8), it is sufficient to solve the equations
(7)) =0, w; .+, w,+@,w)w,;=0, 0, W ;140 w;— @ w)w,;=0,
—0, W, +0,w;+ @, w)w,;=0, e, W, 40, w;— @, w)w,; =0
for any jeZ.
More precisely, we have
Proposition 2. The relations (6) give a one-to-one correspondence
between
(i) solutions A=(A,,A,, A, 4;) of 3),
and
(ii) equivalence classes of the solutions w(A)=1+72 5, w;A™7 of
(7) modulo right-multiplication by v(A)=147>,.,v;4~7 such that
(—19,,+0: ()= (29, +3, () = (—19,,+3.,)v(2)
= (0¢,+0,,)v(2)=0.
For any w(2) € gl (n, Clly,, - - -, LIDI[27'1] such that w,=1, we define
a matrix of infinite size £§=(£,,)icz,;<0 Oy the product of matrices
(W¥ Die, <o a0d (W, _ )i 0, 5<0, 1.8 DY &,;=2 4o W W, Where w} are
coefficients of w()'=>",., wFi.
Then we have
Proposition 3. The above definition of & gives a one-to-one cor-
respondence between
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(i) w@egl®, Clly, - -, LIDHA] such that w,=1
and

(ii) ‘fz(fu)zez,xo such that &;; € gl (n, C[[771» -G,

(8) &,,=0,;1f 1<0, and AE=E&C for some N°X N°-matrix C

= (Cii)i<0,j<0°
Here §,; denotes the Kronecker’s delta, A=(0;.1,;):, ez, 0nd N° denotes
the set of negative integers.

Theorem 1. Through the correspondence w<>&, (1) is equivalent
to the existence of N° X Ne-matrices A,, A,, B,, B, such that
(9) (— 40,48, )6=EA,, (43, +0,)6=¢EB,

(— 48, +3.,)6=EA, (Mo, +8,)E=EB,,
A, A,, B, B, are uniquely determined by & if they exist.

To investigate the structure of the solution space of (7) (or (9)),
we consider an initial-value problem with respect to the subspace
&=%=Cz=772=0-

Theorem 2. For any datum £O=(&%);cz, <0 &:; € 8l (0, Cllpy, &y
70 Co11) satisfying (8), there exists a unique solution & to the initial-value
problem, i.e. E=(8i)ien <0 §i5 € gl (n, C[[ﬂu T - -+, Gl satisfying (8),
9), and &le,_;,—¢,-5,-0=&®. The solution & can be obtained by the fol-
lowing formulae: let &é=explA(,0, —7:0, 40, —7,0;)16® and &
= (éij)i<0,j<07 then Cf:g(é(_))_l-

Corollary. For any datum w®Q)e gl (n, Cllyp, Lo 12 GIDIA]
such that w®=1, there exists a unique solution w() to the initial-
value problem, i.e. w)=1+2,.,w,;2"! € gl (n, Cllyy, 7y, - - -, GIDIA]
satisfying (1) and wR)|z, -y, —¢,—7,-0=w " (@).

§2. Characterization of Witten’s gauge fields. A gauge field V/
satisfies (1) if and only if it satisfies (2) and
(10) w,,v l=w,,v,1=w. v 1=v.,r,1=0.

Taking (6) into consideration, we obtain

Proposition 4. To any solution w(2) of (7) corresponds a solution
of (1) if and only if 'w1=¢(7)1’ D15 &1y [ Ty £+ Ty Cos D2r Nas Co ) for some
$e gl (n, C[[ﬂu N1 Co Zl! Tas D, Jre gl (n, C[W]u zn N2s s o Cz]])

The corollary of Theorem 2 claims that the solution space of (7)
is parametrized by the totality of arbitrary initial data w®Q)
e gl (n, Clly, &y 10, SIDI2'T] such that w{®=1. Thus we can clarify
the structure of the solution space by considering the initial data:

Theorem 3. (i) To any initial datum w®(2) corresponds a solu-
tion of (1) if and only if w =¢@y,, £+ (p,, L) for some ¢ € gl (n, Clly,,
D, ¥ e gl (n, Cllp,, Z1D.

(ii) To any datum w® Q) corresponds a self-dual Yang-Mills field
if and only if w®=¢0, L)+ f)+9@&) for some ¢ e gl (n, Clly, &,1D),
J(X), 9(X) e gl (n, CIIX]D).
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(iii) To any datum wOQ) corresponds an anti-self-dual Yang-
Mills field if and only if wi®= f(p)~+ 9+ (9, Co) for some f(X), g(X)
e gl (n, CIIXID), ¥(p,, Co) € gl (n, Cllne, L1D).

iv) To any datum w® (1) corresponds a trivial solution (i.e. a flat
connection) if and only if w®= f(p)+9C)+h(n)+ k@) for some f(X),
9(X), MX), k(X) e gl (n, CI[XID.

Remark. Starting from arbitrary rational functions ¢(,, (),
Vr(, ;) that cannot be decomposed like (ii) or (iii), we can construct a
rational solution corresponding to a Yang-Mills field which is not self-
dual nor anti-self-dual by the formulae in Theorem 2.
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