66. Continuity of the Inverse of a Certain Integral Operator

By Yoshio Hayashi
College of Science and Technology, Nihon University
(Communicated by Kôsaku Yosida, m. J. A., Sept. 12, 1984)

§ 1. Let $L=\bigcup L_{j}$ be a union of a finite number of simple, smooth and bounded open arcs in \mathbf{R}^{2}, where any two of L_{j} have neither an interior point nor an end point in common. Denote points in \mathbf{R}^{2} by x, y, etc., and the distance between x and y by $|x-y|$. Let $\partial L=\left\{x^{*}\right\}$ be the set of end points x^{*} of L, and set $\bar{L}=L \cup \partial L$. Suppose $C=C(\bar{L})$, $C^{\infty}=C^{\infty}(\bar{L})=\mathcal{E}(\bar{L}), C_{0}^{\infty}=C_{0}^{\infty}(\bar{L})=\mathcal{D}(\bar{L})$, etc., represent the function spaces on \bar{L} in the usual sense.

Assume $\psi(x, y)=(1 / 4 i) H_{0}^{(2)}(k|x-y|)$, where $H_{0}^{(2)}$ is the zero-th order Hankel function of the second kind, and k is a constant such as $\operatorname{Im} k$ $\leqq 0$. ψ is a fundamental solution of the Helmholtz equation.

We shall define an integral operator Ψ by

$$
\begin{equation*}
\Psi \tau \equiv \int_{L} \psi(x, y) \tau(y) d s_{y} \tag{1}
\end{equation*}
$$

and denote the inverse of Ψ by Ψ^{-1}. The purpose of this work is to study about the continuity of Ψ^{-1}.

Since $\psi(x, y)$ has only a log singularity at $x=y, \Psi$ maps $C(\bar{L})$ into $C(\bar{L})$. Furthermore, as was proved in the previous paper [1], $\Psi_{\tau}=0$ is equivalent to $\tau=0$. However, as is implied by the RiemannLebesgue theorem, Ψ^{-1} is not necessarily continuous. For example, for $x \neq a$, we have

$$
\int_{0}^{a} \psi(x, y) \cos m y \mathrm{~d} y=\left(\frac{1}{m}\right) \psi(x, a) \sin m a-\left(\frac{1}{m}\right) \int_{0}^{a} \frac{\partial \psi(x, y)}{\partial y} \sin m y \mathrm{~d} y
$$

The right hand side exists in the sense of Cauchy's principal value of integral, which tends to zero as $m \rightarrow \infty$. However, $\cos m x$ does not tend to zero in $C([0, a])$. In contrast with this, we shall show that Ψ^{-1} is continuous if Ψ is considered to map $\mathscr{D} \rightarrow \mathcal{E}$.
$\S 2$. Definition 1. Set $\psi(x, y)=\psi_{0}(x, y)=\psi^{[0]}(x, y)$, where ψ is the one defined above, and set

$$
\psi_{m}(x, y)=\int^{s_{y}} \psi_{m-1}(x, z) d s_{z}
$$

and

$$
\psi^{[m]}(x, y)=\frac{\partial}{\partial s_{x}} \int^{s_{y}} \psi^{[m-1]}(x, z) d s_{z}, \quad(m=1,2, \cdots)
$$

where $\int^{s_{y}}\{ \} d s_{z}$ is the integration with respect to the arc element $d s_{z}$
of a point z till a point $y \in L$, while $\partial / \partial s_{x}$ is the tangential differentiation at x.

Lemma 1.

(2) $\psi^{[m]}(x, y)=c_{m} \cdot \log |x-y|+f_{m}(x, y)|x-y| \cdot \log |x-y|+g_{m}(x, y)$, where $f_{m}(x, y), g_{m}(x, y) \in C^{2}(L \times L), c_{m}=(-1)^{m} / 2 \pi$, and $m=1,2, \cdots$.

Proof. For $m=0$, (2) is obtained from the expansion formula for $H_{0}^{(2)}$. For $m=m$, (2) is shown to hold by mathematical induction.

Lemma 2.

$$
\begin{equation*}
\frac{\partial^{m} \psi_{m}(x, y)}{\partial s_{x}^{m}}=\psi^{[m]}(x, y) \tag{3}
\end{equation*}
$$

Proof. The proof is straightforward if one note that $\psi^{[m]}(x, y)$ has only a log singularity.

Definition 2. For $\sigma \in C_{0}^{\infty}$, set $\hat{\sigma}=\Psi \sigma$. As usual, m-th order derivatives are described as

$$
\sigma^{(m)}(x)=\frac{d^{m} \sigma(x)}{d s_{x}^{m}} \quad \text { and } \quad \hat{\sigma}^{(m)}(x)=\frac{d^{m} \hat{\sigma}(x)}{d s_{x}^{m}} .
$$

Note that $\widehat{\sigma^{(m)}}(x)=\Psi \sigma^{(m)}(x)$ is different from $\hat{\sigma}^{(m)}(x)$.
Definition 3. $\hat{\Sigma}=\left\{\hat{\sigma} ; \hat{\sigma}=\Psi \sigma, \sigma \in C_{0}^{\infty}\right\}$.
Theorem 1. For $\forall_{\sigma} \in C_{0}^{\infty}$, we have

$$
\begin{equation*}
\hat{\sigma}^{(m)}(x)=(-1)^{m} \cdot \int_{L} \psi^{[m]}(x, y) \sigma^{(m)}(y) d s_{y} \in C(\bar{L}) \tag{4}
\end{equation*}
$$

Proof. By integrating by parts,

$$
\begin{aligned}
\hat{\sigma}(x) & =\int_{L} \psi(x, y) \sigma(y) d s_{y}=(-1) \cdot \int_{L} \psi_{1}(x, y) \sigma^{(1)}(y) d s_{y} \\
& =\cdots=(-1)^{m} \cdot \int_{L} \psi_{m}(x, y) \sigma^{(m)}(y) d s_{y} .
\end{aligned}
$$

Consequently, by Lemma 2, we have (4).
Corollary 1. Ψ maps C_{0}^{∞} into C^{∞}. That is, $\hat{\Sigma} \subset C^{\infty}$.
Note. If $\tau \in C$, then $\hat{\tau}=\Psi \tau \in C$. However, $\hat{\tau}$ does not necessarily belong to C^{2}.

Suppose L^{\prime} is a pertinent union of open arcs such that $C=\bar{L} \cup L^{\prime}$ is a closed contour, or a union of closed contours.

Theorem 2. For $\forall_{\tau} \in C(\bar{L})$ and ${ }^{\forall} \phi \in C_{0}^{2}(\bar{L})$, we have the following identity ;
(5) $\int_{L} \phi(x) d s_{x}\left[\tau(x)+\int_{L} K(x, y) \tau(y) d s_{y}\right]=\int_{L} \hat{\tau}(x) d s_{x} \int_{L} \lambda(x, y) \phi(y) d s_{y}$.

Here we have set $\hat{\tau}=\Psi_{\tau}$, and

$$
\begin{align*}
K(x, y) & =4\left[\int_{L^{\prime}} \frac{\partial^{2} \psi(x, z)}{\partial n(x) \partial n(z)} \psi(y, z) d s_{z}-\int_{C} \frac{\partial \psi(x, z)}{\partial n(x)} \frac{\partial \psi(y, z)}{\partial n(z)} d s_{z}\right] \tag{6}\\
\lambda(x, y) & =-4 \begin{array}{c}
\partial^{2} \psi(x, y) \\
\partial n(x) \partial n(y)
\end{array}
\end{align*}
$$

where $\partial / \partial n(x)$ denotes the differentiation along the normal n of L at x.
Note. (5) holds as well if τ is piecewise continuous on L.

Proof. Let

$$
v(x)=\int_{L} \psi(x, y) \tau(y) d s_{y}, \quad w(x)=\int_{L} \frac{\partial \psi(x, y)}{\partial n(y)} \phi(y) d s_{y} .
$$

Then, (5) is derived by the Green's second identity applied to v and w in the domain exterior to $C=\bar{L} \cup L^{\prime}$.

As is well known, for $\forall \hat{\tau} \in C(\bar{L})$, there exists a sequence $\hat{\tau}_{m} \in C^{\infty}(\bar{L})$ such that $\left\|\hat{\tau}-\hat{\tau}_{m}\right\|=\sup _{L}\left|\hat{\tau}(x)-\hat{\tau}_{m}(x)\right| \rightarrow 0$ when $m \rightarrow \infty$.

Theorem 3. Let τ be piecewise continuous on L, and set $\hat{\tau}=\Psi \tau$. Then, the following identity holds in the sense of a distribution defined on $\mathscr{D}=C_{0}^{\infty}(\bar{L})$,

$$
\begin{equation*}
\tau(x)+\int_{L} K(x, y) \tau(y) d s_{y}=\lim _{m \rightarrow \infty} \int_{L} \lambda(x, y) \hat{\tau}_{m}(y) d s_{y} \tag{7}
\end{equation*}
$$

Proof. The right hand member of (5) is rewritten as

$$
\lim \int_{L} \phi(x) d s_{x} \int_{L} \lambda(x, y) \hat{\tau}_{m}(y) d s_{y}
$$

because $\hat{\tau}_{m}$ tends uniformly to $\hat{\tau}, \lambda(x, y)=\lambda(y, x)$ and the order of integrations is interchangeable for $\hat{\tau}_{m} \in C^{\infty}$. Consequently, by virtue of the completeness of the space \mathscr{D}^{\prime}, we have (7).

Corollary. For $\forall_{\sigma} \in C_{0}^{\infty}$, the following identity holds in the sense of distribution,

$$
\begin{equation*}
\sigma(x)+\int_{L} K(x, y) \sigma(y) d s_{y}=\int_{L} \lambda(x, y) \hat{\sigma}(y) d s_{y} \tag{8}
\end{equation*}
$$

where $\hat{\sigma}=\Psi \sigma \in C^{\infty}$.
Note. $K(x, y)$ and $\lambda(x, y)$ are not necessarily bounded at an end point x^{*} of L.

Definition 4. For ${ }^{\forall} \rho>0$, set $L_{\rho}=\left\{x ; x \in L,\left|x-x^{*}\right| \geqq \rho, x^{*} \in \partial L\right\}$, and $L_{\rho}^{c}=L-L_{\rho}$.

Lemma 3. For $\forall \hat{\tau} \in C(\bar{L})$, let $\hat{\tau}_{m} \in C^{\infty}(\bar{L})$ be the sequence mentioned above, and set

$$
\frac{\partial w_{m}(x)}{\partial n(x)}=\int_{L} \frac{\partial^{2} \psi(x, y)}{\partial n(x) \partial n(y)} \hat{\tau}_{m}(y) d s_{y} .
$$

If $\lim _{m \rightarrow \infty} \partial w_{m} / \partial n=0$ holds at $\forall x \in L_{\rho}$ for sufficiently small ρ, then, $\hat{\tau}(x)=0$ holds for $\forall x \in \bar{L}$.

Proof. This is proved by the study of the behavior of $\partial w_{m} / \partial n$ near an end point x^{*}. However, the detailed proof of this important lemma is too long to describe here.

Note. Though the kernel $K(x, y)$ defined by (6) is not bounded at end points x^{*}, it is continuous with respect to x and y if $x, y \in L_{\rho}$. That is, the operator

$$
K \phi \equiv \int_{L} K(x, y) \phi(y) d s_{y}
$$

is completely continuous when it maps $C\left(L_{\rho}\right) \rightarrow C\left(L_{\rho}\right)$.
Theorem 4. Set

$$
(I+K) \tau \equiv \tau(x)+\int_{L} K(x, y) \tau(y) d s_{y}, \quad x \in L_{\rho}
$$

then, the inverse $(I+K)^{-1} ; C\left(L_{\rho}\right) \rightarrow C\left(L_{\rho}\right)$ exists and is continuous.
Proof. For $\tau \in C\left(L_{\rho}\right)$, we have (7). If $(I+K) \tau=0$, then

$$
\lim _{m \rightarrow \infty} \frac{\partial w_{m}}{\partial n}=0
$$

follows from the right hand side of (7). Consequently, by Lemma 3, we have $\hat{\tau}(x)=0$. While, as was proved in [1], $\hat{\tau}=0$ is equivalent to $\tau=0$.
§3. With help of these results obtained above, we can prove the following theorem.

Definition 5. $\quad \sigma \rightarrow 0$ in \mathscr{D} means $\left\|\boldsymbol{\sigma}^{(m)}\right\|=\sup \left|\boldsymbol{\sigma}^{(m)}\right| \rightarrow 0$ for $m=0,1,2$, \cdots. Similarly, $\hat{\sigma} \rightarrow 0$ in \mathcal{E} means $\left\|\hat{\sigma}^{(m)}\right\| \rightarrow 0$ for $m=0,1,2, \cdots$.

Theorem 5. $\hat{\sigma} \rightarrow 0$ in $\mathcal{E} \rightleftarrows \sigma \rightarrow 0$ in \mathscr{D}.
Proof. By virtue of Theorem 1, it is easy to see that $\sigma \rightarrow 0$ in $\mathscr{D} \Rightarrow \hat{\sigma} \rightarrow 0$ in \mathcal{E}. The converse is also true. A brief proof is as follows; Let $\rho>0$ be an arbitrarily fixed constant, and set $\mathscr{D}_{\rho}=\{\sigma ; \sigma \in \mathscr{D}$, $\left.\operatorname{supp} \sigma \subset L_{\rho}\right\}$. For $\sigma \in \mathscr{D}_{\rho}$, (8) holds, and we have, by Theorem 4, $\sigma=(I+K)^{-1} \hat{\sigma}$. Consequently, $\|\sigma\| \rightarrow 0$ follows from $\|\hat{\sigma}\| \rightarrow 0$. Assume that $\left\|\hat{\sigma}^{(p)}\right\| \rightarrow 0$ implies $\left\|\sigma^{(p)}\right\| \rightarrow 0$ for $p=0,1, \cdots, m-1$. Then, with help of Theorem 1, it is proved that, when $\left\|\hat{\sigma}^{(m)}\right\| \rightarrow 0$, we have

$$
\left\|\int_{L} \lambda(x, y) \sigma^{\widehat{m})}(y) d s_{y}\right\| \rightarrow 0
$$

On the other hand, from (8), we have

$$
\sigma^{(m)}=(I+K)^{-1} \cdot \int_{L} \lambda(x, y) \widehat{\sigma^{(m)}}(y) d s_{y}
$$

Consequently, $\left\|\sigma^{(m)}\right\| \rightarrow 0$ follows from $\left\|\hat{\sigma}^{(p)}\right\| \rightarrow 0, p=0,1, \cdots, m$.

Reference

[1] Hayashi, Y.: The Dirichlet problem for the two-dimensional Helmholtz equation for an open boundary. J. Math. Anal. Appl., 44, 489-530 (1973).

