62. On Semisimple Lie Algebras over Algebraically Closed Fields

By Takeshi HIRAI

Department of Mathematics, Kyoto University

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1984)

Let \mathfrak{g}_c be a semisimple Lie algebra over the complex number field C, \mathfrak{h}_c a Cartan subalgebra of it, and Σ the root system of $(\mathfrak{g}_c, \mathfrak{h}_c)$. Let $H^{\mathfrak{w}} \in \mathfrak{h}_c$ be the element corresponding to a coweight ω , and choose root vectors $X_a(\alpha \in \Sigma)$ in such a way that we get a Chevalley basis from these elements. Denote by \mathfrak{g}_Z and \mathfrak{h}_Z the Lie algebras over the ring of integers Z spanned by $\{X_a, H^{\mathfrak{w}}\}$ and by $\{H^{\mathfrak{w}}\}$ respectively. For a ring or a field F, we define $\mathfrak{g}_F = F \otimes_Z \mathfrak{g}_Z$. In this paper, we consider the Lie algebra $\mathfrak{g} = \mathfrak{g}_K$ over an algebraically closed field K, and study its nilpotent classes under the adjoint group G corresponding to \mathfrak{g} . Let $p = \operatorname{ch}(K)$ be the characteristic of K. We start from p = 0, and then study how the situation varies when p > 0 becomes small.

1. Standard representatives of nilpotent classes. For a subset S of Σ , put $X_s = \sum_{\alpha \in S} X_\alpha \in \mathfrak{g}_Z$. We denote by \overline{X} the element $1 \otimes X \in \mathfrak{g}$ for $X \in \mathfrak{g}_Z$.

Definition. A nilpotent element of the form \overline{X}_s in g is called a standard representative (SR) of its class if it satisfies the following conditions. (1) S is linearly independent. (2) S is a Π -system or a $(\Pi, 1)$ -system. (3) S is minimal for $p (= \operatorname{ch}(K))$ in the sense that for any $\alpha \in S$, $\overline{X}_{s'}$ with $S' = S \setminus \{\alpha\}$ is no longer conjugate to \overline{X}_s .

Here a subset *S* of Σ is called a Π -system if $\gamma - \gamma' \notin \Sigma$ for any γ , $\gamma' \in S$. It is called a $(\Pi, 1)$ -system if it satisfies the following: let $S = \bigcup_j S^j$ be the finest decomposition of *S* such that $S^i \perp S^j$ for $i \neq j$, then for any *j*, (i) S^j is a Π -system, or (ii) there exists a pair $\{\alpha, \beta\} \subset S^j$ such that the inner product $(\alpha, \beta) > 0$, and $(\gamma, \gamma') \leq 0$ for any other pair $\{\gamma, \gamma'\} \subset S^j$, and that both $S^j \setminus \{\alpha\}, S^j \setminus \{\beta\}$ are Π -systems.

We know that in case p=0, every nilpotent class has several types of SRs. Moreover different types of such representatives may have their own rights as is recognized from the result at the end of [2].

For $S \subset \Sigma$, its characteristic diagram ch (S) is defined as follows. To every root $\gamma \in S$, we assign a node, and two nodes γ , $\gamma' \in S$ are connected by k segments or k waved segments if $(\gamma, \gamma') < 0$ or $(\gamma, \gamma') > 0$ respectively, where $k = |\gamma|^2 |\gamma'|^2 / 4 |(\gamma, \gamma')|^2$. Moreover we attach to this diagram the ratios of root lengths for every simple component of Σ . If S is a Π -system, ch (S) is nothing but the Dynkin diagram of S. From now on, we assume for simplicity that g is simple. Further, for Theorems 1-4, we assume that g is not of type F_4 for a technical reason.

Theorem 1. Assume that $S \subset \Sigma$ satisfies the conditions (1) and (2). Then S is minimal for p=0 if and only if so is it for some or any prime p>0 good for g.

Theorem 2. Assume that $S_1, S_2 \subset \Sigma$ are both $(\Pi, 1)$ -systems satisfying the conditions (1), (2), and (3) for p=0. Then $\operatorname{ch}(S_1) \cong \operatorname{ch}(S_2)$ if and only if S_1 is conjugate to S_2 under $\operatorname{Aut}(\Sigma)$, i.e., $S_1 = \sigma S_2$ for some $\sigma \in \operatorname{Aut}(\Sigma)$.

In Theorem 2, in case Aut $(\Sigma) \supseteq Int(\Sigma) = W(\Sigma)$, the Weyl group of Σ , if $S_1 \neq wS_2$ for any $w \in W(\Sigma)$ but $S_1 = \sigma S_2$ for some $\sigma \in Aut(\Sigma) \setminus W(\Sigma)$, then the conjugacy classes of $\overline{X}_{S_1}, \overline{X}_{S_2}$ are invariant under Aut(g) (for good p), so they coincide with each other. Hence we get the following

Theorem 3. Let p be good for g. Let \overline{X}_s be a standard representative. If S is a $(\Pi, 1)$ -system, then its conjugacy class is determined by the characteristic diagram ch (S) of S.

In case p=0, for a non-trivial nilpotent class \mathcal{O} , there corresponds a unique element $H_0 \in \mathfrak{h}_Z$ as follows. Take $X \in \mathcal{O}$. There exists a semisimple element H' of \mathfrak{g}_C such that [H', X]=2X, $H' \in \mathrm{ad}(X)\mathfrak{g}_C$. Then H_0 is by definition a unique dominant element in \mathfrak{h}_C conjugate to H'. Since $\alpha(H_0)=0$, 1 or 2 for any simple root α , we see that $H_0 \in \mathfrak{h}_Z$. Thus, for a class \mathcal{O} , we get a gradation $\mathfrak{g}_Z = \sum_{i \in Z} \mathfrak{g}_Z(i)$ by ad (H_0) . This gives a gradation of \mathfrak{g} as $\mathfrak{g} = \sum_{i \in Z} \mathfrak{g}(i)$, $\mathfrak{g}(i) = K \bigotimes_Z \mathfrak{g}_Z(i)$.

Theorem 4. Let p be good for g. Then for every standard representative \overline{X}_s of a class \mathcal{O} , there exists a $w \in W(\Sigma)$ such that \overline{X}_{ws} belongs to g(2).

Note that \overline{X}_{ws} is again an SR of \mathcal{O} with $\operatorname{ch}(wS)\cong\operatorname{ch}(S)$.

For every type of g except for type F_4 , we determined all the SRs \overline{X}_s modulo the conjugacy of S under $W(\Sigma)$, when p is good. This means essentially the determination of possible diagrams ch(S) of $(\Pi, 1)$ -systems, since Π -systems had been studied in [1]. Further the situations can also be studied when p is no longer good.

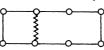
2. Jacobson-Morozov type Theorem. In case p=0, any nonzero nilpotent element is conjugate to an SR $X_s \in \mathfrak{g}_Z$. We can take X_s from $\mathfrak{g}_Z(2)$ corresponding to its conjugacy class. Then we can prove by explicit calculation case by case that there exists a vector Y_0 in $\mathfrak{g}_{Z[1/r]}$ such that $[H_0, Y_0] = -2Y_0$, $[X_s, Y_0] = H_0$, where r=1, 2 or 3. By tensoring with $1 \in K$, and examining coefficients of Y_0 with respect to X_a 's, we get the following.

Theorem 5. Let p be good for g, and $\neq 2$. Then for any nonzero nilpotent element $X \in g$, there exist a semisimple element H, and a nilpotent one Y such that

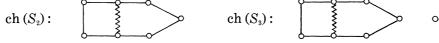
(JM) [H, X] = 2X, [H, Y] = -2Y, [X, Y] = H.

Note that unlike in case p is sufficiently large, the uniqueness assertion for H and Y is no longer valid when p is small enough compared with the Coxeter number of g (cf [5]).

For every standard X_s above, we know Y_0 explicitly, and so we know that (JM) is also true for p=5 and g of type E_s , taking $X=\overline{X}_s$, $H=\overline{H}_0$, $Y=\overline{Y}_0$. (Recall that bad primes for E_s are 5, 3, 2, and those for E_6 and E_7 are 3, 2.) For p=3, and g of type E_6 , E_7 or E_8 , the only case where no Y exists for $X=\overline{X}_s$, $H=\overline{H}_0$, for which (JM) holds, is given by $S=S_1$ for E_8 with ch (S_1) below. This is also the only case for E_6 , E_7 and E_8 , where coefficients of Y_0 have a denominator r=3.



Moreover we remark here that the only cases for E_6 , E_7 and E_8 , where coefficients of Y_0 have a denominator r=2, are given by $S=S_2$ for E_7 , and $S=S_2$, S_3 for E_8 with ch (S_i) (i=2, 3) given below. When p= ch (K) is good for g, these SRs \overline{X}_{S_i} (i=1, 2, 3) represent conjugacy classes with names $D_8(a_3)$, $D_6(a_1)+A_1$, $D_6(a_1)+2A_1$ respectively.



3. Adjoint representation on g. For types $E_{\mathfrak{s}}$, $E_{\mathfrak{r}}$ and $E_{\mathfrak{s}}$, we calculated all elementary divisors of $\operatorname{ad}(X_s)^{\iota}$ $(t=1, 2, \cdots)$ for any SR $X_s \in \mathfrak{g}_Z$, taking its conjugate from $\mathfrak{g}_Z(2)$. Then reducing them by mod p, we get the following results.

Theorem 6. Let g be of type $E_{\mathfrak{s}}$, $E_{\mathfrak{r}}$ or $E_{\mathfrak{s}}$, and p be good for g. Then two nilpotent elements X_1 , X_2 are conjugate under G if and only if so are ad (X_1) , ad (X_2) under GL(g).

Note (T. Umeda). Let g be classical and p=0. Then the assertion of Theorem 6 is true except the cases of type D_{2^n} $(n=2, 3, \cdots)$.

Theorem 7. Let g be of classical type or of type $E_{\mathfrak{s}}$, $E_{\mathfrak{r}}$ or $E_{\mathfrak{s}}$. Let $X_{\mathfrak{s}} \in \mathfrak{g}_{\mathbb{Z}}$ be a standard representative for p=0, and

ad $(X_s)^N \neq 0$, ad $(X_s)^{N+1} = 0$ on \mathfrak{g}_z .

Then any prime number $q \ge N+1$ does not appear in elementary divisors of $\operatorname{ad}(X_s)^t$, $t \ge 1$. In particular, any good prime does not appear in elementary divisors of $\operatorname{ad}(X_s)$.

This theorem implies that the Jordan normal form of $\operatorname{ad}(\overline{X}_s)$ on g has the same form as for p=0 as long as $p=\operatorname{ch}(K) \ge N+1$. On the other hand, if $p \le N$, the Jordan normal form varies depending on p. We can determine it completely for every SR $X_s \in \mathfrak{g}_z$. This gives us many informations about the degeneracy of the mapping $\operatorname{ad}(X_s)$:

No. 6]

 $g \rightarrow g$, and conversely about that of the orbit Ad $(G)\overline{X}_s$. In particular, we see that different types of SRs \overline{X}_s of the same class for p good are no longer conjugate to each other when p becomes bad.

Theorem 8. Let \mathfrak{g} , X_s and N be as in Theorem 7. Then for $X = \overline{X}_s \in \mathfrak{g}$,

ad
$$(X)^p = 0$$
 on g if $[N/2] + 1 \le p \le N$,
ad $(X)^p \ne 0$ on g if $p \le [N/2]$.

We denote by $ad_{g}(l)$ the adjoint representation of g restricted to a subalgebra l of g.

Theorem 9. Let \mathfrak{g} , X_s and N be as in Theorem 7. Assume that there exist an H semisimple, a Y nilpotent in \mathfrak{g} for which (JM) holds together with $X = \overline{X}_s$. Let \mathfrak{l} be the subalgebra of \mathfrak{g} , isomorphic to $\mathfrak{sl}_2(K)$, generated by X, H and Y. Then $\mathfrak{ad}_\mathfrak{g}(\mathfrak{l})$ is not completely reducible for 2 . If <math>H, Y come from H_0 , Y_0 as $H = \overline{H}_0$, $Y = \mathfrak{l} \otimes Y_0$, then $\mathfrak{ad}_\mathfrak{g}(\mathfrak{l})$ is completely reducible for $p \geq N+1$, and not for 2 .

This theorem extends partially Jacobson's result in [3].

References

- E. B. Dynkin: Semisimple subalgebras of semisimple Lie algebras. Amer. Math. Transl. Ser. 2, 6, 111-245 (1957).
- [2] T. Hirai: On Richardson classes of unipotent elements in semisimple algebraic groups. Proc. Japan Acad., 57A, 367-372 (1981).
- [3] N. Jacobson: Completely reducible Lie algebras of linear transformations. Proc. A.M.S., 2, 105-113 (1951).
- [4] N. Spaltenstein: Nilpotent classes and sheets of Lie algebras in bad characteristic. Math. Z., 181, 31-48 (1982).
- [5] T. A. Springer and R. Steinberg: Conjugacy classes. Lect. Notes in Math., vol. 131, Springer-Verlag, pp. 167–266 (1970).