7. Zeros, Eigenvalues and Arithmetic

By Akio Fujir
Department of Mathematics, Rikkyo University
(Communicated by Shokichi Iyanaga, m. J. a., Jan. 12, 1984)

Let γ run over the imaginary parts of the non-trivial zeros of the Riemann zeta function $\zeta(s)$. Let $1 / 4+r^{2}$ run over the eigenvalues of the discrete spectrum of the Laplace-Beltrami operator in L^{2} (the upper half plane $/ \Gamma$), where we take $\Gamma=P S L(2, Z)$. Let α be a positive number. Here we introduce the zeta functions defined by

$$
Z_{\alpha}(s)=\sum_{\gamma>0} \frac{\sin (\alpha \gamma)}{\gamma^{s}} \quad \text { and } \quad B_{\alpha}(s)=\sum_{r>0} \frac{\sin (\alpha r)}{r^{s}}
$$

We are concerned with their analytic properties and their arithmetic.
To state our results we shall introduce some notations. $\Lambda(\cdot)$ is the von Mangoldt function. Let $\left\{P_{0}\right\}$ run over the primitive hyperbolic conjugacy classes in $\operatorname{PSL}(2, Z) . \quad N\left(P_{0}\right)$ denotes the square of the eigenvalue (>1) of a representative P_{0}. For a hyperbolic conjugacy class $\{P\}$ satisfying $P=P_{0}^{k}$ with a natural number k, we put $\tilde{\Lambda}(P)$ $=\left(\log N\left(P_{0}\right)\right) /\left(1-N(P)^{-1}\right)$, where $N(P)=N\left(P_{0}\right)^{k} . A(\Gamma)$ denotes the area of the fundamental domain of Γ, which is equal to $\pi / 3$. We assume the Riemann Hypothesis to get the results on γ or on $Z_{\alpha}(s)$. The following theorem describes a property of the distribution of γ or r.

Theorem 1. Let $T>T_{0}$ and α be a positive number. Then
i) $\sum_{0<r \leq T} e^{i \alpha \gamma}=-\frac{1}{2 \pi} \frac{\Lambda\left(e^{\alpha}\right)}{e^{\alpha / 2}} T+\frac{e^{i \alpha T}}{2 \pi i \alpha} \log T+O\left(\frac{\log T}{\log \log T}\right)$
and
ii) $\sum_{0<r \leqq T} e^{i \alpha r}=\frac{1}{\pi} \frac{\Lambda\left(e^{\alpha / 2}\right)}{e^{\alpha / 2}} T+\frac{A(\Gamma)}{2 \pi i \alpha} T e^{i \alpha T}+\frac{e^{-\alpha / 2}}{2 \pi}\left(\sum_{N(P)=e^{\alpha}} \tilde{\Lambda}(P)\right) T$

$$
+O\left(\frac{T}{\log T}\right)
$$

We remark that i) is a refinement of Landau's theorem and has been proved by the author in [3]. ii) can be proved by the same method. Venkov [11] has studied the asymptotic behavior of the sum $\sum_{r>0} \cos (\alpha r) e^{-t r^{2}}$ as $t \rightarrow+0$. We see by this theorem that for any positive α as $m \rightarrow \infty, \sum_{0<r \leqq m} \sin (\alpha \gamma) / \gamma^{s}$ converges to $Z_{\alpha}(s)$ if $\operatorname{Re} s>0$ and $\sum_{0<r \leqq m} \sin (\alpha r) / r^{s}$ converges to $\beta_{\alpha}(s)$ if $\operatorname{Re} s>1$. Using the Poisson summation formula and the Selberg trace formula, we can show the following theorem.

Theorem 2. For any positive $\alpha, Z_{\alpha}(s)$ and $ß_{\alpha}(s)$ are entire.

We remark that $\sum_{r>0} \gamma^{-s}$ has been studied by Guinand [5] and Delsarte [2]. $\quad \sum_{r>0}\left(1 / 4+r^{2}\right)^{-s}$ has been studied by Minakshisundaram and Pleijel [9]. In a similar manner we can prove our Theorem 2 and also study the zeta functions $\sum_{r>0} \cos (\alpha \gamma) / \gamma^{s}$ and $\sum_{r>0} \cos (\alpha r) / r^{s}$.

As is usual in the theory of numbers, the values of the zeta functions at $s=1$ play important roles. The explicit formula for $Z_{\alpha}(1)$ is well known (cf. (2.7) of Guinand [5]) and the oscillation of $Z_{a}(1)$ as $\alpha \rightarrow \infty$ is essentially that of $-e^{-\alpha / 2} / 2\left(\sum_{n \leq e^{\alpha}} \Lambda(n)-e^{\alpha}\right)$. On the contrary, the evaluation of $B_{\alpha}(1)$ is more complicated. As a direct by-product of the proof of Theorem 2 above, we can express $\beta_{\alpha}(1)$ explicitly. In particular, we obtain the following corollary.

Corollary 1. As $\alpha \rightarrow \infty$,

$$
3_{\alpha}(1)=\frac{1}{2} e^{-\alpha / 2}\left(\sum_{N(P) \leqq e^{\alpha}} \tilde{\Lambda}(P)-e^{\alpha}\right)+O(\alpha) .
$$

Thus we see that that $\beta_{a}(1)$ plays the same role in the theory of the distribution of $\tilde{\Lambda}(P)$ as does $Z_{\alpha}(1)$ in the prime number theory (cf. also Corollary 1^{\prime} below).

The values of the zeta functions at $s=0$ play also important roles. As by-products of the proof of Theorem 2, we can evaluate $Z_{\alpha}(0)$ or $3_{a}(0)$ explicitely. We mention only the following corollary.

Corollary 2. i) $\lim _{\alpha \rightarrow \log n}(\alpha-\log n) Z_{\alpha}(0)=-\frac{\Lambda(n)}{\sqrt{\mathrm{n}}}$.
ii) $\lim _{\alpha \rightarrow 2 \log n}(\alpha-2 \log n) 3_{a}(0)=\frac{1}{\pi} \frac{\Lambda(n)}{n} \quad$ and

$$
\lim _{\alpha \rightarrow \log N\left(P_{1}\right)}\left(\alpha-\log N\left(P_{1}\right)\right) 3_{\alpha}(0)=\frac{1}{2 \pi} \sum_{N(P)=N\left(P_{1}\right)} \frac{\tilde{\Lambda}(P)}{\sqrt{N(P)}}
$$

where $\left\{P_{1}\right\}$ is any hyperbolic conjugacy class.
We remark here that if we use Kuznecov's version [7], [8] of Selberg's trace formula to prove Theorem 2, then we get another expression for $3_{a}(1)$ and $3_{\alpha}(0)$. In particular, we obtain the following corollaries.

Corollary 1^{\prime}. As $\alpha \rightarrow \infty$,

$$
B_{\alpha}(1)=\left(\sum_{n \leq \alpha^{\alpha / 2}} \cdot B(n)-e^{\alpha / 2}\right)+O(\alpha)
$$

where $B(n)$ is the residue at $s=1$ of the function $\zeta(2 s) \sum_{c=1}^{\infty} A_{n}(c) / c^{s}$ and $A_{n}(c)$ is the number of the solutions of $x^{2}+n x+1 \equiv 0(\bmod c)$.

Corollary 2^{\prime}. For $n \geqq 3$,

$$
\lim _{\alpha \rightarrow 2}^{\log \left(n+\sqrt{n^{2}-4}\right) / 2}\left(\alpha-2 \log \frac{n+\sqrt{n^{2}-4}}{2}\right) 3_{\alpha}(0)=\frac{1}{\pi} B(n) .
$$

We can rewrite the second part of ii) of Corollary 2 and Corollary 2^{\prime} in the following form.

Corollary 3. Let n be an integer $\geqq 3$. Suppose that $n^{2}-4=Q^{2} D$
and D is square free. Let χ be the character of the quadratic number field $\boldsymbol{Q}\left(\sqrt{n^{2}-4}\right)$ and $L(s, \chi)$ be the Dirichlet L-function. Then

$$
\begin{aligned}
L(1, \chi) & =\pi F(n)^{-1} \lim _{\alpha \rightarrow 2 \log \left(n+\sqrt{n^{2}-4}\right) / 2}\left(\alpha-2 \log \frac{n+\sqrt{n^{2}-4}}{2}\right) 3_{a}(0) \\
& =\frac{\log \left(n+\sqrt{n^{2}-4}\right) / 2}{\sqrt{n^{2}-4}} \Phi(n) F(n)^{-1},
\end{aligned}
$$

where we put

$$
\begin{gathered}
F(n)=\left(1-\frac{1}{2} \chi(2)\right) \prod_{\substack{p \mid Q \\
p>2}}\left(1-\frac{\chi(p)}{p}\right) v_{2}(1, n)\left(1+\frac{1}{2}\right)^{-1} \prod_{\substack{p \mid n n_{2}-4 \\
p>2}}\left(1+\frac{1}{p}\right)^{-1} v_{p}(1, n) \\
v_{p}(1, n)=1+\sum_{k=1}^{\infty} \frac{A_{n}\left(p^{k}\right)}{p^{k}}
\end{gathered}
$$

for a prime number p,

$$
\Phi(n)=\sum_{d>0, d^{2} \mid n^{2}-4} \frac{h\left(n^{2}-4,2 d\right)}{\nu(n, d)}, \quad h\left(n^{2}-4,2 d\right)
$$

is the number of the classes of the quadratic forms $a x^{2}+2 b x y+c y^{2}$ such that $b^{2}-a c=n^{2}-4$ and $(a, 2 b, c)=2 d$,

$$
\nu(n, d)=\operatorname{Max}\left\{\nu ; \nu \mid k \text { and }\left(\eta_{n}^{k}-\eta_{n}^{-k}\right) /\left(\eta_{n}^{k / \nu}-\eta_{n}^{-k / \nu}\right) \mid d\right\},
$$

η_{n} is the fundamental unit of $\boldsymbol{Q}\left(\sqrt{n^{2}-4}\right)$ and $\eta_{n}^{k}=\left(n+\sqrt{n^{2}-4}\right) / 2$.
Thus we get some new expressions for $L(1, \chi)$. In fact, from the second expression for $L(1, \chi)$ in the above corollary, we can derive Dirichlet's class number formula for the real quadratic number fields.

Finally, we shall describe some special asymptotic behaviors of the partial sums $\sum_{0<r \leqq m} \sin (\alpha \gamma) / \gamma^{\sigma}$ or $\sum_{0<r \leqq m} \sin (\alpha r) / r^{\sigma}$ as $m \rightarrow \infty$. Namely, we show that they present Gibbs's phenomenon at certain points. Our results may be described as follows.

Theorem 3. Let p be a prime number, k be an integer $\geqq 1$ and m run over the integers $\geqq 1$.
$\mathrm{i}-1)$. For any σ in $0<\sigma<1$,

$$
\lim _{m \rightarrow \infty}\left(\frac{\pi}{m}\right)^{1-\sigma} \sum_{0<r \leqq m} \frac{\sin \left(\gamma\left(\log p^{k} \pm \pi / m\right)\right)}{\gamma^{\sigma}}=\mp \frac{1}{2 \pi} \frac{\log p}{p^{k / 2}} \int_{0}^{\pi} \frac{\sin t}{t^{\sigma}} d t
$$

and

$$
\lim _{\alpha \rightarrow \log p^{k} \pm 0}\left|\alpha-\log p^{k}\right|^{1-\sigma} Z_{\alpha}(\sigma)=\mp \frac{1}{2 \pi} \frac{\log p}{p^{k / 2}} \int_{0}^{\infty} \frac{\sin t}{t^{\sigma}} d t .
$$

i-2).

$$
\lim _{m \rightarrow \infty} \sum_{0<r \leqq m} \frac{\sin \left(\gamma\left(\log p^{k} \pm \pi / m\right)\right)}{\gamma}-Z_{\log p^{k}}(1)=\mp \frac{1}{2 \pi} \frac{\log p}{p^{k / 2}} \int_{0}^{\pi} \frac{\sin t}{t} d t
$$

and

$$
\lim _{\alpha \rightarrow 1 \log p^{k} \pm 0} Z_{\alpha}(1)-Z_{\log p^{k}}(1)=\mp \frac{1}{2 \pi} \frac{\log p}{p^{k / 2}} \int_{0}^{\infty} \frac{\sin t}{t} d t .
$$

$\mathrm{i}-3)$. For any σ in $0<\sigma \leqq 1$,

$$
\lim _{m \rightarrow \infty}\left(-\frac{\pi}{m}\right)^{1-\sigma} \frac{1}{\log (m / \pi)} \sum_{0<r \leqq m} \frac{\sin (\pm \gamma(\pi / m))}{\gamma^{\sigma}}= \pm \frac{1}{2 \pi} \int_{0}^{\pi} \frac{\sin t}{t^{\sigma}} d t
$$

and

$$
\lim _{\alpha \rightarrow \pm 0}|\alpha|^{1-\sigma} \frac{1}{\log |1 / \alpha|} Z_{\alpha}(\sigma)= \pm \frac{1}{2 \pi} \int_{0}^{\infty} \frac{\sin t}{t^{\sigma}} d t
$$

ii). For any σ in $1<\sigma \leqq 2$,

$$
\lim _{m \rightarrow \infty}\left(\frac{\pi}{m}\right)^{2-\sigma} \sum_{0<r \leqq m} \frac{\sin (\pm(\pi / m) r)}{r^{\sigma}}= \pm \frac{A(\Gamma)}{2 \pi} \int_{0}^{\pi} \frac{\sin t}{t^{\sigma-1}} d t
$$

and

$$
\lim _{\alpha \rightarrow \pm 0}|\alpha|^{2-\sigma} B_{\alpha}(\sigma)= \pm \frac{A(\Gamma)}{2 \pi} \int_{0}^{\infty} \frac{\sin t}{t^{\sigma-1}} d t
$$

We remark that the details on the zeros of $\zeta(s)$ have appeared in [4] and the details on the eigenvalues of the Laplace-Beltrami operator will appear elsewhere. For comparison we have stated both results at the same time.

References

[1] Andrianov, A. N., and Fomenko, O. M.: Soviet Math. Dokl., 12, 217-219 (1971).
[2] Delsarte, J.: J. Anal. Math., 17, 419-431 (1966).
[. 3] Fujii, A.: Comment. Math. Univ. Sancti Pauli, 31, 99-113 (1982).
[4] -: Comment. Math. Univ. Sancti Pauli, 32, 229-248 (1983).
[5] Guinand, A. P.: Proc. London M.S. 2, 50, 107-119 (1945).
[6] Hejhal, D.: Lect. Notes in Math., vol. 548, Springer (1976).
[7] Kuznecov, N. V.: Soviet Math. Dokl., 19, 1053-1056 (1978).
[8] --: Arithmetic form of the Selberg trace formula and the distribution of the norms of primitive hyperbolic classes of the modular group, Preprint. Habarovsk Complex Res. Inst. 1978.
[9] Minakshisundaram, S., and Pleijel, A.: Canad. J. Math., 1, 242-256 (1949).
[10] Selberg, A.: J. Indian Math. S., 20, 47-87 (1956).
[11] Venkov, A. B.: Math. USSR Izv., 12, 448-462 (1978).
[12] --: J. Soviet Math., 17, 2083-2097 (1981).

