60. Confluent Hypergeometric Functions on an Exceptional Domain

By Shōyū Nagaoka
Department of Mathematics, Kinki University
(Communicated by Shokichi Iyanaga, m. J. A., June 12, 1984)

In [3], G. Shimura studied the generalized confluent hypergeometric functions on tube domains of several types. A motive of his study can be seen in the application to the Eisenstein series as developed in his recent paper [4]. In this paper, we shall describe analogous results in the case of tube domains constructed from Cayley's octonion (which includes the case of exceptional simple tube domain).

We denote by $\mathfrak{C}_{\boldsymbol{R}}$ the real Cayley algebra, and we fix the standard basis (e.g. cf. [2]). For each integer $m(1 \leqq m \leqq 3)$, we put $\kappa(m)=4 \mathrm{~m}$ -3 . We define a vector space $\mathfrak{J}_{\boldsymbol{R}}^{(m)}$ over \boldsymbol{R} by $\widetilde{\mathcal{S}}_{R}^{(m)}=\left\{\left.x \in \boldsymbol{M}_{m}\left(\mathfrak{C}_{R}\right)\right|^{t} \bar{x}=x\right\}$, where the bar denotes the Cayley conjugation. We supply ${\underset{\mathcal{S}}{R}}_{(m)}^{(m i t h}$ a product by $x \circ y=(1 / 2)(x y+y x)$, with this product, $\mathfrak{S}_{R}^{(m)}$ becomes a real Jordan algebra. When $m=3, \mathfrak{J}_{R}^{(m)}$ is called the exceptional Jordan algebra (cf. [1]). If $x=\left(x_{i j}\right) \in \widetilde{\mathcal{F}}_{\boldsymbol{R}}^{(m)}$, we define $\operatorname{tr}(x)=\sum x_{i i} \in \boldsymbol{R}$ and define an inner product (,) on $\tilde{\mathcal{S}}_{R}^{(m)}$ by $(x, y)=\operatorname{tr}(x \circ y)$. Moreover, we define a polynomial function det on $\mathfrak{S}_{R}^{(m)}$ as follows. When $m=3$,

$$
\operatorname{det}(x)=\prod_{i=1}^{3} x_{i i}-x_{11} N\left(x_{23}\right)-x_{22} N\left(x_{13}\right)-x_{33} N\left(x_{12}\right)+\boldsymbol{T}\left(\left(x_{12} x_{23}\right) \bar{x}_{13}\right),
$$

where $N(\alpha)=\alpha \bar{a}=\bar{\alpha} a, T(\alpha)=\alpha+\bar{a}\left(\alpha \in \mathfrak{C}_{R}\right)$. In the case $m=2$, we define as $\operatorname{det}(x)=x_{11} x_{22}-N\left(x_{12}\right)$. We denote by \Re_{m} the set of squares $x \circ x$ of elements of $\breve{\Im}_{R}^{(m)}$, and by \mathfrak{R}_{m}^{+}, the interior of $\mathfrak{\Omega}_{m}$; then \mathscr{R}_{m}^{+}is a convex open cone in $\widetilde{\mathcal{S}}_{R}^{(m)}$. \mathfrak{R}_{3}^{+}is called the exceptional cone. Identifying $C^{m \kappa(m)}$ with $\mathfrak{J}_{C}^{(m)}=\mathfrak{J}_{R}^{(m)} \otimes_{\boldsymbol{R}} \boldsymbol{C}$, we define a tube domain \boldsymbol{H}_{m} by $\boldsymbol{H}_{m}=\{x+i y \mid$ $\left.x \in \widetilde{J}_{R}^{(m)}, y \in \mathfrak{R}_{m}^{+}\right\}$. Then H_{3} is the exceptional tube domain of type E_{7} (cf. [1]) and \boldsymbol{H}_{1} is the complex upper-half plane. We define a Euclidean measure $d x$ on $\mathfrak{J}_{R}^{(m)}$ by viewing $\widetilde{J}_{\boldsymbol{R}}^{(m)}$ as $\boldsymbol{R}^{m \kappa(m)}$. Now we define the generalized gamma function $\Gamma_{m}(s)$ associated with the cone \mathfrak{R}_{m}^{+}by

$$
\Gamma_{m}(s)=\int_{s_{m}^{+}} e^{-\operatorname{tr}(x)} \operatorname{det}(x)^{s-\kappa(m)} d x
$$

then the integral converges for $\operatorname{Re}(s)>\kappa(m)-1$ and satisfies the following identity :

$$
\Gamma_{m}(s)=\pi^{2 m(m-1)} \prod_{n=0}^{m-1} \Gamma(s-4 n)
$$

where $\Gamma(s)$ is the ordinary gamma function (e.g. cf. [1]). Put, for $g \in \mathfrak{R}_{m}^{+}, h \in \mathfrak{J}_{R}^{(m)}$, and $(\alpha, \beta) \in C^{2}$,

$$
\begin{aligned}
& \eta_{m}(g, h ; \alpha, \beta)=\int_{x \pm h \in \mathscr{R}_{m}^{+}} e^{-(g, x)} \operatorname{det}(x+h)^{\alpha-\kappa(m)} \operatorname{det}(x-h)^{\beta-\kappa(m)} d x, \\
& \eta_{m}^{*}(g, h ; \alpha, \beta)=\operatorname{det}(g)^{\alpha+\beta-\kappa(m)} \eta_{m}(g, h ; \alpha, \beta) .
\end{aligned}
$$

We note that the function η_{m} represents by the generalized confluent hypergeometric function

$$
\zeta_{m}(g ; \alpha, \beta)=\int_{\Omega_{m}^{+}} e^{-(\varphi, x)} \operatorname{det}\left(\varepsilon_{m}+x\right)^{\alpha-\kappa(m)} \operatorname{det}(x)^{\beta-\kappa(m)} d x,
$$

where $g \in \mathfrak{R}_{m}^{+}$and ε_{m} is the identity matrix of degree m. We denote by $\mathfrak{J}_{R}^{(m)}(p, q, r)$ the subset of $\mathfrak{J}_{R}^{(m)}$ consisting of the elements with p positive, q negative, and r zero eigenvalues $(p+q+r=m)$. The precise definition of eigenvalue is as follows. When $m=3$, the eigenvalues of an element h of $\mathfrak{\Im}_{R}^{(m)}$ are defined as the roots of a cubic equation $t^{3}-\operatorname{tr}(h) t^{2}+\operatorname{tr}(h \times h) t-\operatorname{det}(h)=0$, where $x \times y$ denotes the crossed product of $x, y \in \mathfrak{J}_{R}^{(m)}$. In the case $m=2$, we define the eigenvalues of an element $h \in \mathfrak{J}_{\boldsymbol{R}}^{(2)}$ to be the roots of a quadratic equation $t^{2}-\operatorname{tr}(h) t$ $+\operatorname{det}(h)=0$. Moreover, by similar way in [3], we shall introduce the notion of the eigenvalues of h relative to g for $h \in \widetilde{\mathcal{J}}_{\boldsymbol{R}}^{(m)}$ and $g \in \mathfrak{\Re}_{m}^{+}$. In the case of degree 3 , we define them to be the roots of an equation $t^{3}-(g, h) t^{2}+(g \times g, h \times h) t-\operatorname{det}(g) \operatorname{det}(h)=0$. When $m=2$, they are defined as the roots of an equation $t^{2}-(g, h) t+\operatorname{det}(g) \operatorname{det}(h)=0$. Now we denote by $\delta_{+}(h g)$ (resp. $\tau_{+}(h g)$) the product (resp. the sum) of all positive eigenvalues of h relative to g. Moreover, we put $\delta_{-}(h g)$ $=\delta_{+}((-h) g), \tau_{-}(h g)=\tau_{+}((-h) g)$ and $\tau(h g)=\tau_{+}(h g)+\tau_{-}(h g)$. We also denote by $\mu(h g)$ the smallest absolute value of non zero eigenvalues of h relative to g if $h=0 ; \mu(h g)=1$ if $h=0$. Now we define, for $g \in \mathfrak{R}_{m}^{+}$, $h \in \widetilde{\mathcal{J}}_{\boldsymbol{R}}^{(m)}(p, q, r),(\alpha, \beta) \in C^{2}$,

$$
\begin{aligned}
\omega_{m}(g, h ; \alpha, \beta)= & 2^{-p_{\alpha-q \beta}} \Gamma_{p}(\beta-4(m-p))^{-1} \Gamma_{q}(\alpha-4(m-q))^{-1} \\
& \cdot \Gamma_{r}(\alpha+\beta-\kappa(m))^{-1} \delta_{+}(h g)^{\kappa(m)-\alpha-2 q} \\
& \cdot \delta_{-}(h g)^{\kappa(m)-\beta-2 p} \eta_{m}^{*}(g, h ; \alpha, \beta),
\end{aligned}
$$

where we understand that Γ_{0} is the constant function 1 . The first main theorem can be stated as follows.

Theorem 1. Function ω_{m} can be continued as a holomorphic function in (α, β) to the whole C^{2} and satisfies

$$
\begin{equation*}
\omega_{m}(g, h ; \alpha, \beta)=\omega_{m}(g, h ; \kappa(m)+4 r-\beta, \kappa(m)+4 r-\alpha), \tag{1}
\end{equation*}
$$

where r is the number of zero eigenvalues of h. Moreover, for every compact set \boldsymbol{T} of C^{2}, there exist two positive constants A and B depending only on \boldsymbol{T} such that

$$
\begin{equation*}
\left|\omega_{m}(g, h ; \alpha, \beta)\right| \leqq A e^{-\tau(h g) / 2}\left(1+\mu(h g)^{-B}\right) \tag{2}
\end{equation*}
$$

for every $(g, h) \in \mathfrak{R}_{m}^{+} \times \mathfrak{S}_{R}^{(m)}$ and every $(\alpha, \beta) \in \boldsymbol{T}$.
This result is in analogy to Theorem 4.2 in [3].
Now consider a series

$$
S_{m}\left(z, L_{m} ; \alpha, \beta\right)=\sum_{a \in L_{m}} \operatorname{det}(z+a)^{-\alpha} \operatorname{det}(\bar{z}+a)^{-\beta}
$$

Here z is a variable on $\boldsymbol{H}_{m}, L_{m}$ is a lattice in the space $\widetilde{\mathcal{F}}_{\boldsymbol{R}}^{(m)}$ and (α, β)
$\in \boldsymbol{C}^{2}$. We see that this series is locally uniformly convergent on \boldsymbol{H}_{m} $\times\left\{(\alpha, \beta) \in C^{2} \mid \operatorname{Re}(\alpha+\beta)>2 \kappa(m)-1\right\}$. Following to [3], we introduce the notion of an algebraic lattice L in $\mathfrak{J}_{\boldsymbol{R}}^{(m)}$, which means a lattice whose elements have algebraic components when we identify $\mathfrak{S}_{\boldsymbol{R}}^{(m)}$ with $\boldsymbol{R}^{m \kappa(m)}$. Using Theorem 1, we can prove the following theorem

Theorem 2. Let L be an algebraic lattice in $\mathfrak{S}_{\boldsymbol{R}}^{(m)}$. Then

$$
\Gamma_{m}(\alpha+\beta-\kappa(m))^{-1} S_{m}(z, L ; \alpha, \beta)
$$

can be continued as a holomorphic function in (α, β) to the whole \boldsymbol{C}^{2}.
Now we put

$$
\begin{aligned}
& S_{m}(z, L ; \alpha)=\sum_{a \in L} \operatorname{det}(z+\alpha)^{-\alpha} \\
& S_{m}^{*}(z, L ; \alpha)=\lim _{s \rightarrow 0} S_{m}(z, L ; \alpha+s, s) .
\end{aligned}
$$

Then the series $S_{m}(z, L ; \alpha)$ is convergent if $\operatorname{Re}(\alpha)>2 \kappa(m)-1$ and defines a holomorphic function in (z, α). Obviously, $S_{m}^{*}(z, L ; \alpha)$ is equal to $S_{m}(z, L ; \alpha)$ if $\operatorname{Re}(\alpha)>2 \kappa(m)-1$. Furthermore we have the following results.

Theorem 3. Suppose L is an algebraic lattice in $\mathfrak{J}_{\boldsymbol{R}}^{(m)}$. Then $S_{m}^{*}(z, L ; \alpha)$ coincides with $S_{m}(z, L ; \alpha)$ for $\operatorname{Re}(\alpha)>\kappa(m)$. Moreover we have

$$
\mu\left(\mathfrak{S}_{\boldsymbol{R}}^{(m)} / L\right) S_{m}^{*}(z, L ; \kappa(m))=2^{-4 m(m-1)} i^{-m \kappa(m)} \Gamma_{m}(\kappa(m))^{-1} \sum 2^{-r(h)} e^{2 \pi i(h, z)}
$$

where the sum extends over all the elements in $L^{\prime} \cap \mathfrak{J}_{R}^{(m)}(p, 0, r)\left(L^{\prime}\right.$ is the dual lattice of L and $r(h)=r)$ and $\mu\left(\mathfrak{S}_{R}^{(m)} / L\right)$ is the measure of $\mathfrak{J}_{\boldsymbol{R}}^{(m)} / L$.

Finally we shall remark on an application of the above results. W.L. Baily, Jr. studied the Eisenstein series of the exceptional modular group Γ ([1]). Following his paper [1], we consider a series

$$
\boldsymbol{E}(s, z)=\sum_{r \in \Gamma / \Gamma_{0}}|j(z, \gamma)|^{s}, \quad\left(s \in \boldsymbol{C}, z \in \boldsymbol{H}_{3}\right)
$$

where $j(z, \gamma)$ is the functional determinant of the transformation γ at the point z and Γ_{0} is a subset of Γ (cf. [1]). Now we put

$$
\gamma_{m}(s)=\pi^{-m s} \Gamma_{m}(s) \quad \text { and } \quad \zeta_{m}(s)=\prod_{n=0}^{m-1} \zeta(s-4 n),
$$

where $\zeta(s)$ is the Riemann zeta function. Moreover we put

$$
\xi(s)=\gamma_{3}(s / 2) \zeta_{3}(s) \operatorname{det}(\operatorname{Im}(z))^{s / 2} \boldsymbol{E}(s, z)
$$

The Fourier coefficient of $\boldsymbol{E}(s, z)$ can be essentially expressed as a product of the "singular series" and the above-defined function ω_{3}. Therefore it is conjectured that the function $\xi(s)$ can be continued as a meromorphic function in s and satisfies a functional equation of the form

$$
\xi(s)=\xi(18-s) .
$$

References

[1] W. L. Baily, Jr.: An exceptional arithmetic group and its Eisenstein series. Ann. of Math., 91, 512-549 (1970).
[2] S: Introductory Lectures on Automorphic Forms. Publication of Math. Soc. of Japan, 12 (1973).
[3] G. Shimura: Confluent hypergeometric functions on tube domains. Math. Ann., 260, 269-302 (1982).
[4] -: On Eisenstein series. Duke Math. J., 50, 417-476 (1983).

