60. Confluent Hypergeometric Functions on an Exceptional Domain

By Shōyū NAGAOKA Department of Mathematics, Kinki University (Communicated by Shokichi IYANAGA, M. J. A., June 12, 1984)

In [3], G. Shimura studied the generalized confluent hypergeometric functions on tube domains of several types. A motive of his study can be seen in the application to the Eisenstein series as developed in his recent paper [4]. In this paper, we shall describe analogous results in the case of tube domains constructed from Cayley's octonion (which includes the case of exceptional simple tube domain).

We denote by \mathbb{S}_R the real Cayley algebra, and we fix the standard basis (e.g. cf. [2]). For each integer m $(1 \le m \le 3)$, we put $\kappa(m) = 4m$ -3. We define a vector space $\mathfrak{J}_R^{(m)}$ over R by $\mathfrak{J}_R^{(m)} = \{x \in M_m(\mathbb{S}_R) | {}^t \bar{x} = x\}$, where the bar denotes the Cayley conjugation. We supply $\mathfrak{J}_R^{(m)}$ with a product by $x \circ y = (1/2)(xy + yx)$, with this product, $\mathfrak{J}_R^{(m)}$ becomes a real Jordan algebra. When m = 3, $\mathfrak{J}_R^{(m)}$ is called the exceptional Jordan algebra (cf. [1]). If $x = (x_{ij}) \in \mathfrak{J}_R^{(m)}$, we define tr $(x) = \sum x_{ii} \in R$ and define an inner product (,) on $\mathfrak{J}_R^{(m)}$ by $(x, y) = \operatorname{tr} (x \circ y)$. Moreover, we define a polynomial function det on $\mathfrak{J}_R^{(m)}$ as follows. When m = 3,

 $\det(x) = \prod_{i=1}^{3} x_{ii} - x_{11} N(x_{23}) - x_{22} N(x_{13}) - x_{33} N(x_{12}) + T((x_{12} x_{23}) \bar{x}_{13}),$

where $N(a) = a\bar{a} = \bar{a}a$, $T(a) = a + \bar{a}$ $(a \in \mathbb{G}_R)$. In the case m=2, we define as det $(x) = x_{11}x_{22} - N(x_{12})$. We denote by \mathfrak{R}_m the set of squares $x \circ x$ of elements of $\mathfrak{F}_R^{(m)}$, and by \mathfrak{R}_m^+ , the interior of \mathfrak{R}_m ; then \mathfrak{R}_m^+ is a convex open cone in $\mathfrak{F}_R^{(m)}$. \mathfrak{R}_3^+ is called the exceptional cone. Identifying $C^{m_{\mathfrak{E}}(m)}$ with $\mathfrak{F}_C^{(m)} = \mathfrak{F}_R^{(m)} \otimes_R C$, we define a tube domain H_m by $H_m = \{x + iy | x \in \mathfrak{F}_R^{(m)}, y \in \mathfrak{R}_m^+\}$. Then H_3 is the exceptional tube domain of type E_7 (cf. [1]) and H_1 is the complex upper-half plane. We define a Euclidean measure dx on $\mathfrak{F}_R^{(m)}$ by viewing $\mathfrak{F}_R^{(m)}$ as $R^{m_{\mathfrak{E}}(m)}$. Now we define the generalized gamma function $\Gamma_m(s)$ associated with the cone \mathfrak{R}_m^+ by

$$\Gamma_m(s) = \int_{\mathfrak{R}_m^+} e^{-\operatorname{tr}(x)} \det(x)^{s-\kappa(m)} dx,$$

then the integral converges for $\operatorname{Re}(s) > \kappa(m) - 1$ and satisfies the following identity:

$$\Gamma_{m}(s) = \pi^{2m(m-1)} \prod_{n=0}^{m-1} \Gamma(s-4n),$$

where $\Gamma(s)$ is the ordinary gamma function (e.g. cf. [1]). Put, for $g \in \Re_m^+$, $h \in \Im_R^{(m)}$, and $(\alpha, \beta) \in C^2$,

$$\begin{split} \eta_m(g,h;\alpha,\beta) = & \int_{x\pm h\in \mathfrak{K}_m^+} e^{-(g,x)} \det (x+h)^{\alpha-\mathfrak{s}(m)} \det (x-h)^{\beta-\mathfrak{s}(m)} dx, \\ \eta_m^*(g,h;\alpha,\beta) = & \det (g)^{\alpha+\beta-\mathfrak{s}(m)} \eta_m(g,h;\alpha,\beta). \end{split}$$

We note that the function η_m represents by the generalized confluent hypergeometric function

$$\zeta_m(g;\alpha,\beta) = \int_{\mathfrak{K}_m^+} e^{-(g,x)} \det (\varepsilon_m + x)^{\alpha - \kappa(m)} \det (x)^{\beta - \kappa(m)} dx,$$

where $g \in \Re_m^+$ and ε_m is the identity matrix of degree m. We denote by $\mathfrak{J}_{R}^{(m)}(p,q,r)$ the subset of $\mathfrak{J}_{R}^{(m)}$ consisting of the elements with p positive, q negative, and r zero eigenvalues (p+q+r=m). The precise definition of eigenvalue is as follows. When m=3, the eigenvalues of an element h of $\mathfrak{V}_{R}^{(m)}$ are defined as the roots of a cubic equation t^{3} - tr $(h)t^{2}$ + tr $(h \times h)t$ - det (h) = 0, where $x \times y$ denotes the crossed product of x, $y \in \mathfrak{J}_{\mathbf{R}}^{(m)}$. In the case m=2, we define the eigenvalues of an element $h \in \mathfrak{J}_{R}^{(2)}$ to be the roots of a quadratic equation $t^{2} - \operatorname{tr}(h)t$ $+\det(h)=0$. Moreover, by similar way in [3], we shall introduce the notion of the eigenvalues of h relative to g for $h \in \mathfrak{J}_{\mathbf{R}}^{(m)}$ and $g \in \mathfrak{R}_{m}^{+}$. In the case of degree 3, we define them to be the roots of an equation $t^3-(g,h)t^2+(g\times g,h\times h)t-\det(g)\det(h)=0.$ When m=2, they are defined as the roots of an equation $t^2 - (g, h)t + \det(g) \det(h) = 0$. Now we denote by $\delta_+(hg)$ (resp. $\tau_+(hg)$) the product (resp. the sum) of all positive eigenvalues of h relative to g. Moreover, we put $\delta_{-}(hg)$ $=\delta_+((-h)g), \ \tau_-(hg)=\tau_+((-h)g) \text{ and } \tau(hg)=\tau_+(hg)+\tau_-(hg).$ We also denote by $\mu(hg)$ the smallest absolute value of non zero eigenvalues of h relative to g if h=0; $\mu(hg)=1$ if h=0. Now we define, for $g \in \Re_m^+$, $h \in \mathfrak{J}_{R}^{(m)}(p, q, r), \ (\alpha, \beta) \in C^{2},$

$$\omega_{m}(g,h;\alpha,\beta) = 2^{-p\alpha-q\beta} \Gamma_{p}(\beta-4(m-p))^{-1} \Gamma_{q}(\alpha-4(m-q))^{-1} \\ \cdot \Gamma_{r}(\alpha+\beta-\kappa(m))^{-1}\delta_{+}(hg)^{\kappa(m)-\alpha-2q} \\ \cdot \delta_{-}(hg)^{\kappa(m)-\beta-2p} \eta_{m}^{*}(g,h;\alpha,\beta),$$

where we understand that Γ_0 is the constant function 1. The first main theorem can be stated as follows.

Theorem 1. Function ω_m can be continued as a holomorphic function in (α, β) to the whole C^2 and satisfies

(1) $\omega_m(g, h; \alpha, \beta) = \omega_m(g, h; \kappa(m) + 4r - \beta, \kappa(m) + 4r - \alpha),$

where r is the number of zero eigenvalues of h. Moreover, for every compact set T of C^2 , there exist two positive constants A and B depending only on T such that

(2) $|\omega_m(g, h; \alpha, \beta)| \leq A e^{-\tau (hg)/2} (1 + \mu (hg)^{-B})$

for every $(g, h) \in \Re_m^+ \times \mathfrak{J}_R^{(m)}$ and every $(\alpha, \beta) \in T$.

This result is in analogy to Theorem 4.2 in [3].

Now consider a series

 $S_m(z, L_m; \alpha, \beta) = \sum_{a \in L_m} \det (z+a)^{-\alpha} \det (\overline{z}+a)^{-\beta}.$

Here z is a variable on H_m , L_m is a lattice in the space $\mathfrak{I}_R^{(m)}$ and (α, β)

No. 6]

 $\in C^2$. We see that this series is locally uniformly convergent on H_m $\times \{(\alpha, \beta) \in C^2 | \operatorname{Re}(\alpha + \beta) > 2\kappa(m) - 1 \}$. Following to [3], we introduce the notion of an algebraic lattice L in $\mathfrak{J}_{\mathbf{R}}^{(m)}$, which means a lattice whose elements have algebraic components when we identify $\mathfrak{T}_{R}^{(m)}$ with $R^{m_{x}(m)}$. Using Theorem 1, we can prove the following theorem

Theorem 2. Let L be an algebraic lattice in $\mathfrak{I}_{R}^{(m)}$. Then

 $\Gamma_m(\alpha+\beta-\kappa(m))^{-1}S_m(z,L;\alpha,\beta)$

can be continued as a holomorphic function in (α, β) to the whole C^2 . Now we put

$$S_m(z, L; \alpha) = \sum_{a \in L} \det (z+a)^{-\alpha},$$

$$S_m^*(z, L; \alpha) = \lim_{s \to 0} S_m(z, L; \alpha+s, s).$$

Then the series $S_m(z, L; \alpha)$ is convergent if $\operatorname{Re}(\alpha) > 2\kappa(m) - 1$ and defines a holomorphic function in (z, α) . Obviously, $S_m^*(z, L; \alpha)$ is equal to $S_m(z, L; \alpha)$ if $\operatorname{Re}(\alpha) > 2\kappa(m) - 1$. Furthermore we have the following results.

Theorem 3. Suppose L is an algebraic lattice in $\mathfrak{T}_{\mathbf{R}}^{(m)}$. Then $S_m^*(z, L; \alpha)$ coincides with $S_m(z, L; \alpha)$ for $\operatorname{Re}(\alpha) > \kappa(m)$. Moreover we have

 $\mu(\mathfrak{T}_{\mathbf{R}}^{(m)}/L)S_{m}^{*}(z,L;\kappa(m)) = 2^{-4m(m-1)}i^{-m_{\kappa}(m)}\Gamma_{m}(\kappa(m))^{-1}\sum_{k}2^{-r(k)}e^{2\pi i(k,z)}$ where the sum extends over all the elements in $L' \cap \mathfrak{J}^{(m)}_{\mathbf{R}}(p, 0, r)$ (L' is the dual lattice of L and r(h)=r and $\mu(\mathfrak{S}_{\mathbf{R}}^{(m)}/L)$ is the measure of $\mathfrak{S}_{\mathbf{R}}^{(m)}/L$.

Finally we shall remark on an application of the above results. W.L. Baily, Jr. studied the Eisenstein series of the exceptional modular group Γ ([1]). Following his paper [1], we consider a series $E(s, z) = \sum_{\gamma \in \Gamma/\Gamma_0} |j(z, \gamma)|^s,$ $(s \in C, z \in H_3),$

where $j(z, \tau)$ is the functional determinant of the transformation τ at the point z and Γ_0 is a subset of Γ (cf. [1]). Now we put

 $\Upsilon_m(s) = \pi^{-ms} \Gamma_m(s)$ and $\zeta_m(s) = \prod_{n=0}^{m-1} \zeta(s-4n)$,

where $\zeta(s)$ is the Riemann zeta function. Moreover we put

 $\xi(s) = \gamma_3(s/2)\zeta_3(s) \det (\operatorname{Im}(z))^{s/2} E(s, z).$

The Fourier coefficient of E(s, z) can be essentially expressed as a product of the "singular series" and the above-defined function ω_3 . Therefore it is conjectured that the function $\xi(s)$ can be continued as a meromorphic function in s and satisfies a functional equation of the form

$$\xi(s) = \xi(18 - s).$$

References

- W. L. Baily, Jr.: An exceptional arithmetic group and its Eisenstein series. Ann. of Math., 91, 512-549 (1970).
 —: Introductory Lectures on Automorphic Forms. Publication of Math. Soc. of Japan, 12 (1973).
- G. Shimura: Confluent hypergeometric functions on tube domains. Math. Ann., 260, 269-302 (1982).
 : On Eisenstein series. Duke Math. J., 50, 417-476 (1983). [3]
- [4] -