59. The Unit Indices of Imaginary Abelian Number Fields

By Mikihito Hirabayashi*) and Ken-ichi Yoshino**)

(Communicated by Shokichi Iyanaga, m. J. A., June 12, 1984)

1. Introduction. Let K be an imaginary abelian number field with conductor f and K_{0} its maximal real subfield. Let $E_{K}, E_{K_{0}}$ be the groups of units of K, K_{0} respectively. Let W_{K} be the group of roots of unity in K. Then the unit index (the Hasse index) Q_{K} of K is defined as

$$
Q_{K}=\left[E_{K}: W_{K} E_{K_{0}}\right]
$$

As Hasse [1] showed, $Q_{K}=1$ or 2 . He investigated the properties of the unit index, which, however, do not suffice to determine it in many cases.

Hasse [1] proved in Satz 23 that if f is a power of a prime, then $Q_{K}=1$. The aim of this note is to determine the unit index Q_{K} of K of certain types whose conductor f is a product of two or three prime powers. As a consequence we construct some counterexamples to Satz 29 of [1].

In the following, we let p, q be distinct odd primes and a, b and n positive integers.

Notations. \boldsymbol{Q} denotes the field of rational numbers. ζ_{f} denotes a primitive f-th root of unity. χ_{4}, χ_{p} denote odd Dirichlet characters with conductor $4, p$ respectively. $\psi_{2^{n}}$ denotes even Dirichlet character with conductor 2^{n}. For any abelian number field L, we denote by $X(L)$ the character group corresponding to L, and $h(L)$ the ideal class number. $\langle x, y, \cdots\rangle$ denotes the group generated by x, y, \cdots. $a \mid b$ (resp. $a^{n} \| b$) means that a divides b (resp. a^{n} divides b and a^{n+1} does not divide b).
2. Results. In the following we will use Sätze of [1] except Satz 29.

First we treat the case $f=4 p^{a}$ and $f=p^{a} q^{b}$.
Theorem 1. Let $f=4 p^{a}$ or $f=p^{a} q^{b}$. Then $Q_{K}=2$ if and only if the relative degree $\left[\boldsymbol{Q}\left(\zeta_{f}\right): K\right]$ is odd.

For the proof we need Sätze of [1] and
Lemma 1. If k is an imaginary subfield of K with odd relative degree $[K: k]$, then $Q_{k}=Q_{K}$ where Q_{k} is the unit index of k.

Next we consider the case $f=2^{n} p^{a}(n \geqq 3)$. If $2 \|(p-1)$, we can

[^0]determine all the unit indices Q_{K} for such conductor f by Sätze of [1]. If $2^{2} \|(p-1)$, then so we can do by Sätze of [1] and the following

Theorem 2. Suppose $2^{2} \|(p-1)$. If K is the imaginary abelian number field corresponding to $X(K)=\left\langle\chi_{4}, \psi_{2 n} \chi_{p}^{(p-1) / 2}\right\rangle$ or $\left\langle\chi_{4} \psi_{2^{n}}, \chi_{4} \chi_{p}^{(p-1) / 2}\right\rangle$, then $Q_{K}=1$. More precisely, there exists a system of fundamental units of K_{0} with arbitrary signatures.

Finally we assume that $2^{3} \mid(p-1)$. We treat here only the case $n=3$, i.e., $f=8 p$ because the case $n \geqq 4$ is complicated. First we notice the following

Proposition 1. Suppose $2^{3} \mid(p-1)$. Let ε be the fundamental unit of $\boldsymbol{Q}(\sqrt{2 p})$. If $2 \| h(\boldsymbol{Q}(\sqrt{2 p}))$, then $N \varepsilon=+1$.

The converse of Proposition 1 is not always true. Under the condition that $2 \| h(\boldsymbol{Q}(\sqrt{ } 2 p))$, we can determine all the unit indices Q_{K} of K with conductor $f=8 p, 2^{3} \mid(p-1)$, by means of Sätze of [1] and the following Theorem 3 and 4.

Theorem 3. Suppose $2^{e} \|(p-1), e \geqq 3$. For each $s, s=2,3, \cdots$, $e-1$, let k_{s} be the imaginary abelian number fields corresponding to $X\left(k_{s}\right)=\left\langle\chi_{4}, \psi_{8} \chi_{p}^{(p-1) / 2^{s}}\right\rangle$ or $\left\langle\chi_{4} \psi_{8}, \chi_{4} \chi_{p}^{(p-1) / 2^{s}}\right\rangle$. If $2 \| h(\boldsymbol{Q}(\sqrt{2 p}))$, then $Q_{k_{s}}=\mathbf{2}$ for each s.

Theorem 4. Suppose $2^{3} \mid(p-1)$. Let $k=\boldsymbol{Q}(\sqrt{-1}, \sqrt{2 p})$ or $k=\boldsymbol{Q}(\sqrt{-2}, \sqrt{-p})$. Then $Q_{k}=2$ if and only if $N \varepsilon=+1$ where ε is the fundamental unit of $\boldsymbol{Q}(\sqrt{2 p})$.

The proof of Theorem 3 depends on the following
Lemma 2. Let l be a prime number. Let k be a real number field of finite degree over \boldsymbol{Q} and K a real cyclic extension of k of degree $l^{m}, m \geqq 2$. Let F be the intermediate field of K / k such that $[F: k]=l$. Suppose that there exist two distinct prime ideals of k which are totally ramified in K / k while any other prime ideal is unramified in K / k. If $l \nmid h(k) h(F)$, then $l \nmid h(K)$.

In the case $f=4 p^{a} q^{b}$, we have analogous results to the case $f=8 p^{a}$. For example, we obtain the following proposition similar to Theorem 4.

Proposition 2. Let p, q be distinct odd primes such that $p \equiv q$ $\equiv 1(\bmod 4)$. Let $k=\boldsymbol{Q}(\sqrt{-p}, \sqrt{-q})$. Then $Q_{k}=2$ if and only if $N \varepsilon$ $=+1$ where ε is the fundamental unit of $\boldsymbol{Q}(\sqrt{p q})$.
3. Remarks. (1) Hasse [1] tabulated the unit indices Q_{K} and the relative class number h_{K}^{*} of imaginary abelian number fields K with conductor $f \leqq 100$. We prolonged his table for $100<f \leqq 200$ ([2]).
(2) Hasse asserted in Satz 29 of [1]: if k is an imaginary subfield of K, then Q_{k} divides Q_{K}. However this divisibility does not hold true in general. In fact, we obtain some counterexamples as follows.

Example 1. Let p and k_{s} be as in Theorem 3. Let K_{s} be the
imaginary abelian number fields corresponding to $X\left(K_{s}\right)=\left\langle\chi_{4}, \psi_{8}\right.$, $\left.\chi_{p}^{(p-1) / 2^{s}}\right\rangle$. Then $K_{s} \supseteqq k_{s}$ and $Q_{K_{s}}=1$, and $Q_{k_{s}}=2$ for each $s=2,3, \cdots$, $e-1$, if $2 \| h(\boldsymbol{Q}(\sqrt{2 p}))$.

Example 2. Let p be an odd prime such that $2^{3} \mid(p-1)$. Let $K=\boldsymbol{Q}(\sqrt{-1}, \sqrt{2}, \sqrt{p})$ and $k=\boldsymbol{Q}(\sqrt{-1}, \sqrt{2 p})$ or $k=\boldsymbol{Q}(\sqrt{-2}, \sqrt{-p})$. Then $Q_{K}=1$, and $Q_{k}=2$ if $N \varepsilon=+1$ where ε is the fundamental unit of $\boldsymbol{Q}(\sqrt{2 p})$.

For conductor $f=4 p q$, we have analogous counterexamples to Satz 29.

References

[1] H. Hasse: Über die Klassenzahl abelscher Zahlkörper. Akademie Verlag, Berlin (1952).
[2] K. Yoshino and M. Hirabayashi: On the Relative Class Number of the Imaginary Abelian Number Field I, II. Memoirs of the College of Liberal Arts, Kanazawa Medical University, vols. 9-10 (1981, 1982).

[^0]: *) Kanazawa Institute of Technology.
 **) Kanazawa Medical University.

