59. The Unit Indices of Imaginary Abelian Number Fields

By Mikihito HIRABAYASHI*) and Ken-ichi YOSHINO**)

(Communicated by Shokichi IYANAGA, M. J. A., June 12, 1984)

1. Introduction. Let K be an imaginary abelian number field with conductor f and K_0 its maximal real subfield. Let E_K , E_{K_0} be the groups of units of K, K_0 respectively. Let W_K be the group of roots of unity in K. Then the unit index (the Hasse index) Q_K of Kis defined as

$$Q_{K} = [E_{K}: W_{K}E_{K_{0}}].$$

As Hasse [1] showed, $Q_{\kappa} = 1$ or 2. He investigated the properties of the unit index, which, however, do not suffice to determine it in many cases.

Hasse [1] proved in Satz 23 that if f is a power of a prime, then $Q_{\kappa}=1$. The aim of this note is to determine the unit index Q_{κ} of K of certain types whose conductor f is a product of two or three prime powers. As a consequence we construct some counterexamples to Satz 29 of [1].

In the following, we let p, q be distinct odd primes and a, b and n positive integers.

Notations. Q denotes the field of rational numbers. ζ_f denotes a primitive *f*-th root of unity. χ_4, χ_p denote odd Dirichlet characters with conductor 4, *p* respectively. ψ_{2^n} denotes even Dirichlet character with conductor 2^n . For any abelian number field *L*, we denote by X(L) the character group corresponding to *L*, and h(L) the ideal class number. $\langle x, y, \cdots \rangle$ denotes the group generated by x, y, \cdots . a | b(resp. $a^n || b$) means that *a* divides *b* (resp. a^n divides *b* and a^{n+1} does not divide *b*).

2. Results. In the following we will use Sätze of [1] except Satz 29.

First we treat the case $f=4p^a$ and $f=p^aq^b$.

Theorem 1. Let $f=4p^a$ or $f=p^aq^b$. Then $Q_K=2$ if and only if the relative degree $[Q(\zeta_f):K]$ is odd.

For the proof we need Sätze of [1] and

Lemma 1. If k is an imaginary subfield of K with odd relative degree [K:k], then $Q_k = Q_K$ where Q_k is the unit index of k.

Next we consider the case $f=2^np^a$ $(n\geq 3)$. If $2\parallel (p-1)$, we can

^{*)} Kanazawa Institute of Technology.

^{**)} Kanazawa Medical University.

determine all the unit indices Q_{κ} for such conductor f by Sätze of [1]. If $2^2 ||(p-1)$, then so we can do by Sätze of [1] and the following

Theorem 2. Suppose $2^2 ||(p-1)$. If K is the imaginary abelian number field corresponding to $X(K) = \langle \chi_4, \psi_{2^n} \chi_p^{(p-1)/2} \rangle$ or $\langle \chi_4 \psi_{2^n}, \chi_4 \chi_p^{(p-1)/2} \rangle$, then $Q_K = 1$. More precisely, there exists a system of fundamental units of K_0 with arbitrary signatures.

Finally we assume that $2^3 | (p-1)$. We treat here only the case n=3, i.e., f=8p because the case $n \ge 4$ is complicated. First we notice the following

Proposition 1. Suppose $2^3 | (p-1)$. Let ε be the fundamental unit of $Q(\sqrt{2p})$. If $2 || h(Q(\sqrt{2p}))$, then $N\varepsilon = +1$.

The converse of Proposition 1 is not always true. Under the condition that $2 \| h(\mathbf{Q}(\sqrt{2p})))$, we can determine all the unit indices Q_{κ} of K with conductor $f=8p, 2^{3}|(p-1)$, by means of Sätze of [1] and the following Theorem 3 and 4.

Theorem 3. Suppose $2^e ||(p-1), e \ge 3$. For each s, $s=2, 3, \cdots$, e-1, let k_s be the imaginary abelian number fields corresponding to $X(k_s) = \langle \chi_4, \psi_8 \chi_p^{(p-1)/2^s} \rangle$ or $\langle \chi_4 \psi_8, \chi_4 \chi_p^{(p-1)/2^s} \rangle$. If $2 ||h(\mathbf{Q}(\sqrt{2p})))$, then $Q_{k_s} = 2$ for each s.

Theorem 4. Suppose $2^3 | (p-1)$. Let $k = \mathbf{Q}(\sqrt{-1}, \sqrt{2p})$ or $k = \mathbf{Q}(\sqrt{-2}, \sqrt{-p})$. Then $Q_k = 2$ if and only if $N\varepsilon = +1$ where ε is the fundamental unit of $\mathbf{Q}(\sqrt{2p})$.

The proof of Theorem 3 depends on the following

Lemma 2. Let l be a prime number. Let k be a real number field of finite degree over Q and K a real cyclic extension of k of degree $l^m, m \ge 2$. Let F be the intermediate field of K/k such that [F:k]=l. Suppose that there exist two distinct prime ideals of k which are totally ramified in K/k while any other prime ideal is unramified in K/k. If $l \nmid h(k)h(F)$, then $l \nmid h(K)$.

In the case $f=4p^aq^b$, we have analogous results to the case $f=8p^a$. For example, we obtain the following proposition similar to Theorem 4.

Proposition 2. Let p, q be distinct odd primes such that $p \equiv q \equiv 1 \pmod{4}$. Let $k = Q(\sqrt{-p}, \sqrt{-q})$. Then $Q_k = 2$ if and only if $N \varepsilon = +1$ where ε is the fundamental unit of $Q(\sqrt{pq})$.

3. Remarks. (1) Hasse [1] tabulated the unit indices Q_{κ} and the relative class number h_{κ}^* of imaginary abelian number fields K with conductor $f \leq 100$. We prolonged his table for $100 < f \leq 200$ ([2]).

(2) Hasse asserted in Satz 29 of [1]: if k is an imaginary subfield of K, then Q_k divides Q_k . However this divisibility does not hold true in general. In fact, we obtain some counterexamples as follows.

Example 1. Let p and k_s be as in Theorem 3. Let K_s be the

imaginary abelian number fields corresponding to $X(K_s) = \langle \chi_4, \psi_8, \chi_p^{(p-1)/2s} \rangle$. Then $K_s \supseteq k_s$ and $Q_{K_s} = 1$, and $Q_{k_s} = 2$ for each $s = 2, 3, \cdots$, e-1, if $2 \parallel h(\mathbf{Q}(\sqrt{2p}))$.

Example 2. Let p be an odd prime such that $2^{s}|(p-1)$. Let $K=Q(\sqrt{-1},\sqrt{2},\sqrt{p})$ and $k=Q(\sqrt{-1},\sqrt{2p})$ or $k=Q(\sqrt{-2},\sqrt{-p})$. Then $Q_{k}=1$, and $Q_{k}=2$ if $N\varepsilon = +1$ where ε is the fundamental unit of $Q(\sqrt{2p})$.

For conductor f = 4pq, we have analogous counterexamples to Satz 29.

References

- H. Hasse: Über die Klassenzahl abelscher Zahlkörper. Akademie Verlag, Berlin (1952).
- [2] K. Yoshino and M. Hirabayashi: On the Relative Class Number of the Imaginary Abelian Number Field I, II. Memoirs of the College of Liberal Arts, Kanazawa Medical University, vols. 9–10 (1981, 1982).