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1o Introduction. The following pseudo-Riemannian metric is
considered in R;
(1.1) (ds)2=2dxldx- a(xl)dxdx,
where (a)3<,< is a symmetric, positive definite, and C matrix de-
pending only on the first variable x. Let L(x, ..., x) be a non-trivial
linear form in R, depending only on (x, ., x), and M=R\Ker L
be a pseudo-Riemannian manifold with the Lorentzian metric (1.1).
Let a(x) be a non-vanishing C function of x1. On M we define a
wave equation with the following lower order term;
(1.2) Pu=[-u+2( log (a(x)L(x)), gu}, 2 e C.
Here, is the. ordinary wave equation on M determined by the metric
(1.1) and/Tu denotes the gradient of u. The inner product (,} defined
in the tangent.space Tp(M) induces an inner product, denoted by the
same. notation, in the cotangent space by the obvious isomorphism be-
tween both spaces. We shall write ]vl2=(v, v} for a tangent or cotan-
gent vector v.

The metric (1.1) was employed by Gfinther [3] in order to obtain
non-trivial examples of Huygens’ principle.. He proved that, in case
n=4, [u=0 becomes a Huygens differential equation (written HDE
for short) in the following sense. Let E(x, y) be the forward funda-
mental solution of [-;E=(x-y), supp Ec the future propaga-
tion cone with vertex y, (the. time orientation can be fixed in an
arbitrarily way). Then E(x, y) vanishes inside the propagation cone
for any y e M.

On the other hand, if a are constant, the equation (1.2) is equiva-
lent to an ordinary Euler-Poisson-Darboux type equation. It is then
well-known that the equation is a HDE for certain integral values of
2. (see e.g. [1].)

In this note we shall make a remark that, under a certain condi-
tion, the same is true even when a are not constant.

Theorem 1.1. Suppose that ’L is independent of x when con-
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sidered as a vector field on M by the obvious identification of T(M) with
T*(M). Then the equation (1.2) becomes a HDE if and only if n is
even and is an integer satisfying -(n/2)+2<__(n/2)-l.

2. Outline of the proof. One way, perhaps the easiest, ot prov-
ing the theorem is to construct the so-called Hadamard expansion of
the fundamental solution E(x, y) to the equation (1.2). This can be
written as

(2.1) E(x, y)-- Ui) (x, Y)Z/I-n/2 (F(X, y)),

where U)(x, y) C(M M). F(x, y) is defined as the square of geo-
desic distance between the two points, x, y of M. (If the metric (1.1)
is replaced by the ordinary Minkowskian metric, we have F(x, y)
--(xl--ylY-,(x-y)2.) The functions Zq are defined as follows;
when Re q 1,

Zq(t)={tq/F(q+l), t>0
0, t=<0.

It is then easy to see that Xq(t) can be continued to a distribution-valued
entire Cunction of q. We have, for instance,
(2.2) Z_q(t)=(-)(t), q= l, 2,
One need to be careful to define Zq(F(x, y)) since F(x, y) has the double
zero at x=y. We refer the precise definition to Delache and Leray
[1] and here only note that (F) can be defined in such a way that its
support is contained in the future propagation cone at y.

The unctions U) are successively determined by the following

transport equations;
(2.3) 2(17F, 17U)}+ (V-]+ (217 log (aL), 17F}+4-2n)U()

PU-1), 1)-’- 0, 1, (U(-1) ----0).
To compute the solutions U() explicitly one need to know the exact
form of geodesic flows (or the bicharacteristic flows). This is in fact
made possible due to the rather simple form of our metric (1.1). (See
[3] or [2, 5.7].) We are then able to get

-/ (x, y)(2.4) Ui)(x’ Y)-
2 L(y)

where
det (OF /OxOx) / a(y)

2ntdeta,(xg deta,(y)[/ a(x)
The main argument in Gfinther [3] was to calculate F(x, y) exactly

in order to prove that det (3F/OxOx) and therefore (x, y) depend only

on (x, y). Once this proved and, if 2=0, we have PU)=0. Then

(2.3) shows that one can choose U)=0, ,=1, 2,..., since the right-

hand side vanishes. This leads to
Eo(x, y)= U)(x, y)Z_/(F),
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which, combined with (2.2), shows that Huygens’ principle is valid for
n=4, 6, .... For n odd, since supp Z_/.(F) contains the inside of the
propagation cone, Huygens’ principle can not be expected.

In case of general , further computation shows that

( _) rl-n/2 r(xl, y) L(x)-- }2
-1

(2.5) U()
2, L(y)-/

g’L l-Io (’ + k)(]- 1- 1),

v=o, 1, ....
In order for Huygens’ principle to hold, it is necessary and suf-

ficient that U? vanishes for , (n/2)-1 (n is supposed to be even). By
(2.5), this is equivalent to ]-[-(+k)(--k--1)=0, ,_>_(n/2)--1. The
statement of Theorem 1.1 follows immediately from this observation.

3. Some trivial transformations. The equation (1.2) can be
transformed into an ordinary wave equation in a different pseudo-
Riemannian manifold by so-called trivial transformations. We first
note that a(x’) can be eliminated by considering aPa- instead of P.
This allows us to put a= 1 from now on.

We shall now show that a certain conformal transformation can
reduce the equation (1.2) into an ordinary wave equation. Let M,
=Rn\Ker L be the pseudo-Riemannian manifold with the metric

]L(x) ]"(ds)2 , gi dxdxj, fte R,
where (ds) is defined by (1.1). Let [-], be the ordinary wave operator
defined on M,; namely,

.u=Igl-" , (1 gl/ gu), i=/x,
where (g) denotes the inverse matrix of (gj)and [gl=[detgl. A
simple calculation gives

--------/
, a"(3, log L(x))3z u

=[ L(x).-" ([-] + n--2
2

Z(/7 log L(x), ’} u.

This formula will provide a restatement of Theorem 1.1. By a
Huygens manifold we shall mean a pseudo-Riemannian manifold N
with a Lorentzian metric, in which the wave equation []u=0 becomes
an HDE.

Corollary 3.1. Let the assumption for M and L in Theorem 1.1
hold here again. Then M, is a Huygens manifold if and only if n is
even and (n-2)//4 is an integer satisfying --(n/2)/2=(n--2)[/4
g(n/2)--l.
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