52. Index, Localization and Classification of Characteristic Surfaces for Linear Partial Differential Operators

By Sunao Ōuchi
Department of Mathematics, Sofia University, Tokyo

(Communicated by Kôsaku Yosida, m. J. A., June 12, 1984)

Let $P(z, \partial)$ be a linear partial differential operator of order m with holomorphic coefficients in $\Omega \subset C^{n+1}$, and K be a connected nonsingular hypersurface in Ω. Characteristic indices and the localization on K of $P(z, \partial)$ are defined by means of a special coordinate in [6]. In the present paper we give another definition of them, new notions and a classification of characteristic surfaces of $P(z, \partial)$.
§1. Definitions. $z=\left(z_{0}, z_{1}, \cdots, z_{n}\right)=\left(z_{0}, z^{\prime}\right)$ denotes a point in $C^{n+1}, \partial=\left(\partial_{0}, \partial_{1}, \cdots, \partial_{n}\right)=\left(\partial_{0}, \partial^{\prime}\right), \partial_{i}=\partial / \partial_{z_{i}} . \quad$ For a domain $U \subset C^{n+1}, \mathcal{O}(U)$ is the set of all holomorphic functions in U and $\mathcal{L}(U)$ is the set of all holomorphic vector fields in U. For a multi-index $\alpha=\left(\alpha_{0}, \alpha_{1}, \cdots, \alpha_{n}\right)=$ $\left(\alpha_{0}, \alpha^{\prime}\right), \alpha_{i} \in Z_{+}=N \cup\{0\},|\alpha|=\alpha_{0}+\left|\alpha^{\prime}\right|=\alpha_{0}+\alpha_{1}+\cdots+\alpha_{n}$ and for $X=\left(X_{0}\right.$, $\left.X_{1}, \cdots, X_{n}\right)=\left(X_{0}, X^{\prime}\right) \in \mathcal{L}(U)^{n+1}, X^{\alpha}=\left(X_{0}\right)^{\alpha_{0}}\left(X_{1}\right)^{\alpha_{1}} \cdots\left(X_{n}\right)^{\alpha_{n}}=\left(X_{0}\right)^{\alpha_{0}}\left(X^{\prime}\right)^{\alpha^{\prime}}$.

For a point $p \in K$, there is a neighbourhood U of p such that $K \cap U$ $=\{z \in U ; \varphi(z)=0\}$ with $\varphi(z) \in \mathcal{O}(U)$ and $d \varphi(z) \neq 0$ on K. For $f(z) \in \mathcal{O}(U)$, $|f|=j \in Z_{+} \cup\{+\infty\}$ means that $f(z)=\varphi(z)^{j} g(z)$ with $g(z) \neq 0$ on K. If $f(z) \equiv 0,|f|=+\infty$.

We can find $X=\left(X_{0}, X_{1}, \cdots, X_{n}\right) \in \mathcal{L}(U)^{n+1}$, by shrinking U if necessary, such that
(1.1) $\left\langle d \varphi, X_{0}\right\rangle \neq 0$ on K and $\left\langle d \varphi, X_{i}\right\rangle=0$ on K for $1 \leq i \leq n$,
(1.2) $\left\{X_{i}\right\}(0 \leq i \leq n)$ are linearly independent at each point in U, where \langle,$\rangle means the product of cotangent and tangent vectors.$

Hence we can write $P(z, \partial)$ in U, by using $\left\{X_{i}\right\}$, as follows :

$$
\begin{equation*}
P(z, \partial)=\sum_{k=0}^{m}\left(\sum_{|\alpha|=k} A_{\alpha}(z) X^{\alpha}\right)=\sum_{k=0}^{m}\left(\sum_{|\alpha|=k} a_{\alpha}(z) \varphi(z)^{j_{\alpha}}\left(X_{0}\right)^{\alpha_{0}}\left(X^{\prime}\right)^{\alpha^{\alpha}}\right), \tag{1.3}
\end{equation*}
$$

where $A_{\alpha}(z)=a_{\alpha}(z) \varphi(z)^{j \alpha}$ and $j_{\alpha}=\left|A_{\alpha}\right|$. Put

$$
\left\{\begin{array}{l}
d_{k}=\min \left\{j_{\alpha}+\left|\alpha^{\prime}\right| ;|\alpha|=k\right\}, \quad J_{k}=\min \left\{j_{\alpha} ;|\alpha|=k, j_{\alpha}+\left|\alpha^{\prime}\right|=d_{k}\right\}, \tag{1.4}\\
L_{k}=d_{k}-J_{k} .
\end{array}\right.
$$

We can define quantities $\left\{\sigma_{i}\right\}$ and $\left\{\sigma_{p, j}\right\}$ by the same way as in [6]. Let $A=\left\{\left(k, d_{k}\right) \in R^{2} ; d_{k} \neq+\infty, 0 \leq k \leq m\right\}$ and \hat{A} be the convex hull of A. If $A=\left\{\left(m, d_{m}\right)\right\}$, we put $\sigma_{1}=1$. Otherwise the lower convex part of the boundary $\partial \hat{A}$ of \hat{A} consists of segments $\Sigma_{1}(i)(1 \leq i \leq l)$ (see Fig. 1). Let $A_{1}=\left\{\left(k_{i}, d_{k_{i}}\right) ; 0 \leq i \leq l\right\}, m=k_{0}>k_{1}>\cdots>k_{l} \geq 0$, be the set of vertices of $\bigcup_{i=1}^{l} \Sigma_{1}(i)$. Put

$$
\begin{equation*}
\sigma_{i}=\max \left\{\left(d_{k_{i-1}}-d_{k_{i}}\right) /\left(k_{i-1}-k_{i}\right), 1\right\} . \tag{1.5}
\end{equation*}
$$

Then there is a $p \in N$ such that $\sigma_{1}>\sigma_{2}>\cdots>\sigma_{p}=1$. Put

$$
\begin{align*}
C(i)=\left\{\alpha \in Z_{+}^{n+1} ;|\alpha|=k_{i},\left|\alpha^{\prime}\right|=\right. & \left.L_{k_{i}}, j_{\alpha}=J_{k_{i}}\right\} \tag{1.6}\\
\tilde{P}_{i}(z, \partial)=\sum_{\alpha \in C(i)} a_{\alpha}(z)\left(X^{\prime}\right)^{\alpha^{\prime}} & (0 \leq i \leq p-1) \tag{1.7}
\end{align*}
$$

(Fig. 1)

(Fig. 2)

Let us also consider $B=\left\{\left(k, J_{k}\right) \in R^{2} ; d_{k_{p-1}}-d_{k}=k_{p-1}-k, 0 \leq k\right.$ $\left.\leq k_{p-1}\right\}$ to define $\left\{\sigma_{p, i}\right\}$. If $B=\left\{\left(k_{p-1}, J_{k_{p-1}}\right)\right\}$, we put $\sigma_{p, 1}=1$. Otherwise the lower convex part of the boundary $\partial \hat{B}$ of the convex hull \hat{B} of B consists of segments $\Sigma_{2}(i)\left(1 \leq i \leq l^{\prime}\right)$ (see Fig. 2). Let $B_{1}=\left\{\left(r_{i}, J_{r_{i}}\right) ; 0 \leq i\right.$ $\left.\leq l^{\prime}\right\}, k_{p-1}=r_{0}>r_{1}>\cdots>r_{l^{\prime}}>0$. Put (1.8)

$$
\sigma_{p, i}=\max \left\{\left(J_{r_{i-1}}-J_{r_{i}}\right) /\left(r_{i-1}-r_{i}\right), 1\right\}
$$

Hence there is a $q \in N$ such that $\sigma_{p, 1}>\sigma_{p, 2}>\cdots>\sigma_{p, q}=1$. Put

$$
\begin{gather*}
C(p, i)=\left\{\alpha \in \mathrm{Z}_{+}^{n+1} ;|\alpha|=r_{i},\left|\alpha^{\prime}\right|=L_{r_{i}}, j_{\alpha}=J_{r_{i}}\right\}, \tag{1.9}\\
\tilde{P}_{p, i}(z, \partial)=\sum_{\alpha \in C(p, i)} a_{\alpha}(z)\left(X^{\prime}\right)^{\alpha^{\prime}} \quad(1 \leq i \leq q-1) .
\end{gather*}
$$

Definition 1.1. We call $\sigma_{i}(1 \leq i \leq p)$ the i-th characteristic index of K and $\sigma_{p, i}(1 \leq i \leq q)$ the (p, i)-characteristic index of K for $P(z, \partial)$.

We may restrict $\tilde{P}_{i}(\mathrm{z}, \partial)(0 \leq i \leq p-1)$ and $\tilde{P}_{p, i}(z, \partial)(1 \leq i \leq q-1)$ on K, have operators on K and denote them by $P_{\mathrm{loc}, K, i}$ and $P_{1 \mathrm{loc}, K,(p, i)}$ respectively.

Definition 1.2. We call $P_{\mathrm{loc}, K, i}$ the i-th localization on K of $P(z, \partial)$ and $P_{\text {loc }, K,(p, i)}$ the ($\left.p, i\right)$-localization on K of $P(z, \partial)$.

Remark 1.3. In [6] we call $\sigma_{p, i}$ the i-th subcharacteristic index and only $P_{\text {loc }, K, 0}$ is defined and called the localization.

The characteristic indices and the localizations are defined by $\varphi(z)$ and $\left\{X_{i}\right\}(0 \leq i \leq n)$. Let $\psi(z) \in \mathcal{O}(V)$ be another function defining K and $Y=\left(Y_{0}, Y_{1}, \cdots, Y_{n}\right) \in \mathcal{L}(V)^{n+1}$ be vector fields with properties (1.1)(1.2) for $\psi(z)$ and $\left\{Y_{i}\right\}(0 \leq i \leq n)$ in a neighbourhood V of p. Then we have in $U \cap V$,

$$
\begin{equation*}
\varphi(z)=\chi(z) \psi(z), \quad X_{i}=\sum_{j=0}^{n} a_{i, j}(z) Y_{j} \quad(0 \leq i \leq n), \tag{1.11}
\end{equation*}
$$

where $\chi(z), a_{i, j}(z) \in \mathcal{O}(U \cap V), \quad \chi(z) \neq 0$ and $\operatorname{det}\left(a_{i, j}(z)\right) \neq 0$ in $U \cap V$. From (1.1)-(1.2), we have

Lemma 1.1. The following holds in (1.11):

$$
\begin{equation*}
\left.a_{0,0}(z)\right|_{K \cap U \cap V} \neq 0 \quad \text { and } \quad a_{i, 0}(z)_{K \cap U \cap V}=0 \quad \text { for } 1 \leq i \leq n . \tag{1.12}
\end{equation*}
$$

We denote by $\sigma_{i}(\psi, Y)\left(1 \leq i \leq p^{\prime}\right)$ and $\sigma_{p^{\prime}, j}(\psi, Y)\left(1 \leq j \leq q^{\prime}\right)$ characteristic indices, and by $P_{\text {loc }, K, i}(\psi, Y)$ and $P_{\text {loo }, K,\left(p^{\prime}, j\right)}(\psi, Y)$ localizations of $P(z, \partial)$ defined by $\psi(z)$ and Y. Let $Q(z, \partial)$ be an operator homogeneous in X with degree k,
(1.13) $\quad Q(z, \partial)=\sum_{|\alpha|=k} B_{\alpha}(z) X^{\alpha}=\sum_{|\alpha|=k} B_{\alpha}(z)\left\{\prod_{i=0}^{n}\left(\sum_{j=0}^{n} a_{i, j}(z) Y_{j}\right)^{\alpha i}\right\}$.

In the sequel P.S.L means the principal symbol of an operator L. We have from Lemma 1.1,

Lemma 1.2. The followings hold for $Q(z, \partial)$:

$$
\begin{equation*}
\sigma_{1}(\varphi, X)=\sigma_{1,1}(\varphi, X)=\sigma_{1}(\psi, Y)=\sigma_{1,1}(\psi, Y)=1 \tag{1.14}
\end{equation*}
$$ where $h(s)(s \in K \cap U \cap V)$ is a holomorphic function on $K \cap U \cap V$ and $h(s)$ does not vanish on $K \cap U \cap V$.

Consequently we have from Lemma 1.2,
Theorem 1.3. The characteristic indices $\left\{\sigma_{i}\right\}(1 \leq i \leq p)$ and $\left\{\sigma_{p, j}\right\}$ $(1 \leq j \leq q)$ don't depend on $\varphi(z)$ defining K and vector fields $\left\{X_{i}\right\}(0 \leq i$ $\leq n)$ satisfying (1.1)-(1.2).

For the localization we have
Theorem 1.4. There are holomorphic functions $h_{i}(s)(0 \leq i \leq p$ $-1)$ and $h_{p, j}(s)(1 \leq j \leq q-1)$ on $K \cap U \cap V$ such that
(i) $h_{i}(s) \neq 0$ and $h_{p, j}(s) \neq 0$ on $K \cap U \cap V$,
(ii)-(a) P.S.P ${ }_{\text {⿺oc, } K, i}(\varphi, X)=h_{i}(s)$ P.S. $\mathrm{P}_{\mathrm{loc}, K, i}(\psi, Y)$,
-(b) P.S. $\mathrm{P}_{1 \mathrm{oc}, K,(p, j)}(\varphi, X)=h_{p, j}(s)$ P.S.P $\mathrm{P}_{1 \mathrm{oc}, K,(p, j)}(\psi, Y)$.
Finally we give a classification of characteristic surfaces.
Definition 1.4. Suppose that K is characteristic for $P(z, \partial)$.
(a) If $\sigma_{1}>1$, then K is called irregular.
(b) If $\sigma_{1}=1$ and $\sigma_{1,1}>1$, then K is called weakly irregular.
(c) If $\sigma_{1}=\sigma_{1,1}=1$, then K is called regular.
§2. Remarks. (i) Let $P(z, \partial)$ be an operator with decomposable principal part, namely said to have constant multiple characteristics (see [2], [4]), and K be its characteristic surface. Let $\tilde{\sigma}$ be the irregularity of characteristic elements defined in [4]. Then $\sigma_{1} \leq \tilde{\sigma}$. For $P(z, \partial)=\left(\partial_{1}\right)^{2}+z_{0} \partial_{0}$ and $K=\left\{z_{0}=0\right\}$, we have $\sigma_{1}=1$, but $\tilde{\sigma}=2$. If $P(z, \partial)$ satisfies the Levi's condition, namely $\tilde{\sigma}=1$, we have $\sigma_{1}=\sigma_{1,1}=1$.
(ii) Let $P(z, \partial)$ be an operator treated in [1], [3], where characteristic initial value problems were considered. We have $\sigma_{1}=\sigma_{1,1}=1$ for their initial characteristic surface.
(iii) If K is generically noncharacteristic, that is, P.S.P (z, $\xi)\left.\right|_{z \in K, \xi=d \varphi(z)} \neq 0$, then $\sigma_{1}=\sigma_{1,1}=1$. If $P(z, \partial)$ is an ordinary differential operator, then $\sigma_{p, 1}=1$.

We give some examples. Let $K=\left\{z_{0}=0\right\}$.

$$
\begin{align*}
& \left\{\begin{array}{l}
P(z, \partial)=\left(\partial_{0}\right)^{m-l}\left(\partial_{1}\right)^{l}+\sum_{|\beta| \leq m, \beta \neq \alpha} a_{\beta}(z) \partial^{\beta}, \quad \alpha=(m-l, l, 0, \cdots, 0), \\
\left.a_{\beta}(z)=0\left(\mid z_{0}\right)^{\beta}\right) \quad\left(\delta=\max \left(\beta_{0}-m+l, 0\right)\right) \quad \text { for }|\beta|=m \text { and } \beta \neq \alpha, \\
P_{\text {loc }, K, 0}=\left(\partial_{1}\right)^{l}+\sum_{\left|\beta^{\prime}\right|=l, \beta \neq \alpha} a_{\left(m-l, \beta^{\prime}\right)}\left(0, z^{\prime}\right)\left(\partial^{\prime}\right)^{\beta^{\prime}} .
\end{array}\right. \tag{2.1}\\
& \left\{\begin{array}{l}
P(z, \partial)=\left(z_{0}\right)^{2}\left(\partial_{0}\right)^{2}\left(\partial_{1}\right)^{2}+\left(\partial_{1}\right)^{4}+\left(z_{0}\right)^{2}\left(\partial_{0}\right)^{3}+\left(\partial_{1}\right)\left(\partial_{0}\right), \\
\sigma_{1}=2, \quad \sigma_{2}=1, \quad \sigma_{2,1}=2, \quad \sigma_{2,2}=1, \quad P_{\text {loc }, K, 0}=\left(\partial_{1}\right)^{4}, \quad P_{1 \mathrm{oc}, K, 1}=I, \\
P_{\text {1oc }, K,(2,1)}=\partial_{1} .
\end{array}\right. \\
& \left\{\begin{array}{l}
P(z, \partial)=\left(z_{0}\right)^{2}\left(\partial_{0}\right)^{2} \partial_{1}+\left(\partial_{1}\right)^{2}+z_{0} b(z) \partial_{0}+c(z) \partial_{1}+d(z), \\
\sigma_{1}=1, \quad \sigma_{1,1}=2, \quad \sigma_{1,2}=1, \quad P_{1 \mathrm{oc}, K, 0}=\partial_{1}, \quad P_{1 \mathrm{oc}, K,(1,1)}=\left(\partial_{1}\right)^{2} .
\end{array}\right.
\end{align*}
$$

Operators of the form (2.1) were treated in [7]. K is weakly irregular in (2.3) and irregular in (2.2).

In [6], some theorems concerning with existence of solutions with singularity on K for $P(z, \partial) u(z)=f(z)$ are stated, where $\sigma_{1}, \sigma_{1,1}$ and $P_{\text {loc }, K, 0}$ are used. It follows from Theorem 1.3 and 1.4 that the conditions in [6] are invariant by coordinate transformations. Not only σ_{1} and $P_{\mathrm{loc}, K, 0}$ but also other σ_{i} and $P_{\mathrm{loc}, K, i}$ are used in [5], where the relation between genuine solutions and solutions of formal power series for characteristic Cauchy problems is studied.

References

[1] Baouendi, M. S. and Goulaouic. C.: Cauchy problems with characteristic initial hypersurface. Comm. Pure Appl. Math., 26, 455-475 (1973).
[2] De Paris, J. C.: Problème de Cauchy analytique à données singulières pour un opérateur différentiel bien décomposable. J. Math. Pure Appl., 51, 465-488 (1972).
[3] Hasegawa, Y.: On the initial value problems with data on a characteristic hypersurface. J. Math. Kyoto Univ., 13, 579-593 (1973).
[4] Komatsu, H.: Irregularity of characteristic elements and construction of null solutions. J. Fac. Sci. Univ. Tokyo Sec. IA, Math., 23, 297-342 (1976).
[5] Ōuchi, S.: Characteristic Cauchy problems and solutions of formal power series. Ann. Inst. Fourier, 33, 131-176 (1983).
[6] -: Characteristic indices and subcharacteristic indices of surfaces for linear partial differential operators. Proc. Japan Acad., 57A, 481-484 (1981).
[7] Persson, J.: Singular holomorphic solutions of linear partial differential equations with holomorphic coefficients and nonanalytic solutions of equations with analytic coefficients. Astérisque, Soc. Math. France, 89-90, 223247 (1981).

