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1. Introduction. A meromorphic function h(x) is said to be
factored if there are a meromorphic unction f(x) and an entire func-
tion g(x)such that h(x)--f(g(x)), h(x) is said to be pseudo-prime if
every such actorization h--f g implies that either f is rational or g
is a polynomial [4]. In this paper, we will consider actorization of
solutions o the equation
(1.1) y(x+ 1)-- P(y(x)),
where P(w) is a polynomial of degree p>__2"
(1.2) P(w)=a,wp+ +alw+ao, a=/=O, p>=2.
Any meromorphic solution y(x) of (1.1) is transcendental and entire,
unless it is a constant [6], [7]. If there is a number 2 such that
(1.3) 2=P(2) and P’(2)=1, P(w)=2+(w--2)+A(w--])++ ...,
then the difference equation (1.1) possesses an entire solution (x)
which is expanded asymptotically

(1.3’) (x) +x-’/ +>=o CX-/ ( lg x )x
as x tends to oo through D(R, )"
(1.3") D(R, D={IxI>R, larg x-]<(z/2)-}

U {Im [xe-]>R} [2 {Im [xe] < -R}
where e0 is arbitrarily fixed, and R(>0) depends on and c0, in
which m is the integer in (1.3) (A=/=0) [5], [7].

I there is a number l such that
(1.4) 2=P(2) and [P’(2)[>l,
then (1.1) possesses an entire solution s() which is expanded as
(1.49 s(x)=2+=pb=q(bx) (we write P’(2) as b)
where
(1.4") (t) 2+ 7:Pt
is an entire solution of the SchrSder equation
(1.1’) w(bt) P(w(t)).
Further we have shown that any entire solution y(x) of (1.1) satisfies
(1.5) y(x--z)-+2 as / oo,
uniformly on any compact set, where 2 is a number for which either
(1.3) or (1.4) holds [7], [8]. If y(x) satisfies (1.5)or a 2 with (1.3),
then y(x) can be written as
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(1.6) y(x)=(X+(X)),
where (x) is an entire function with period 1, i.e., if we write g(x)
=x+(x), then y(x) is actored as y=o g and g satisfies
(1.6’) g(x +1)= g(x)+ 1.
If solution y(x) satisfies (1.5) ior a 2 with (1.4), then
(1.7) y(x)= ((x)b),
where (x) is also an entire unction with period 1, i.e., if we write
g(x)=(x)b, then we have y= g and g satisfies
(1.7’) g(x+l)--bg(x).

Thus, any solution of (1.1) can be factored with either or
and a function g(x) which satisfies a difference equation (1.6’) or (1.7’).
Thus it would be natural to ask whether (x) would be factored as

=f g in which g(x) satisfies some difference equation
(1.8) g(x+ 1)-- G(g(x)),
where G(w) is an entire function. Similarly, we ask whether
would be factored as ,=f h in which h(t) satisfies some SchrSder
equation
(1.8’) h(bt)= G(h(t)), with an entire G(w).
In this direction, we prove here

Theorem 1. ,(x) can not be factored with transcendental f and

g, where g(x) satisfies (1.8). Similarly (t) can not be factored with

transcendental f and h, where h(t) satisfies (1.8’).
Theorem 2. Let y(x) be an entire solution of (1.1). Suppose y(x)

is factored as y=f g with transcendental f and g, where g satisfies
some difference equation of the fo.rm (1.8), then we have
(1.9) g(x)= ax+(x) (a =/= O) or
(1.9’) g(x): x(x)c + d (c =/= O)
where x(x) is an entire function with period 1, and a, c, d are con-
stants.

For the proof, we need the ollowing lemma, which we proved in
[9]. Professor W. K. Hayman kindly informed me that the lemma had
been obtained by Dr. R. Goldstein [3]. His method is different from
that in [9].

Lemma 1. Let P(w) and Q(w) be polynomials of degree p and q,
respectively, with q>:2. Suppose there is a meromorphic function
f(x) with
(1.10) f(Q(x))= P(f(x)).
Then we must have that p=q, and f(x) can not be transcendental.

2. Proot of Theorem 2. Let y(x) be a solution of (1.1) and let
y(x)=f(g(x)) with transcendental f and g, with g(x+l):G(g(x)),
where G(w) is an entire function. Suppose G(w) be transcendental.
Then, by a Theorem of Clunie [1, p. 77, Theorem 2 (ii)], we obtain
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(2.1) lim sup [T(r, f G)/T(r, f)]= c.

On the other hand, we get
T(r, f G)= T(r, P f)=pT(r, f)+O (1)

by [2, p. 47, Theorem 6.1], which contradicts with (2.1). Thus G(w)
can not be transcendental and must be a polynomial.

By Lemma 1, G(w) can not be of degree2, since f(x) is transcen-
dental by assumption. Therefore

G(w)=cw+a.
Suppose c=l. If a--0, then g(x) and hence y(x)--f(g(x)) would

be periodic, which is a contradiction. Hence, if c=1, then a=/=0.
Thus we have that g(x+l)=g(x)+a, and hence g(x)--ax+(x), with
an entire periodic unction (x) and a constant a=/=0.

Suppose c :/: 1. Then g(x +1)= cg(x)+ a, hence g(x)= (x)c + d
with d= a/(1-- c). Thus we obtain the assertion of the Theorem.

). Proof of Theorem 1. We note that (x) is univalent in a
hal-plane

H= {x; Re x
for sufficiently large R [7]. Suppose (x)=f(g(x)) with transcen-
dental f and g, where g satisfies an equation of the form (1.8). By
Theorem 2, g(x) must be written as either in (1.9) or in (1.9’). In
either case, f(g(x)) can not be univalent in H unless (x)const. In
fact, if (x)const., then there are x and x such that x:/:x and
ax+(x)= ax+(x). Take a natural number k so large that x.= x
k e H, ]= 1, 2. Then we would have f(g(x))= f(g(x)), x:/: x, and

f(g(x)) is not univalent in H. The possibility that g(x)= a,c+ d (a= a
const.) is also excluded by the univalency of f(g(x)) in H.

(t) is univalent in [tlp for a small p. Suppose (t)=f(h(t))
with transcendental f and h, where h(t)satisfies an equation of the
orm. (1.89, with b= P’(). Put g(x)= h(bx). Then g(x) satisfies a dif-
erence equation (1.8). By Theorem 2, we have

either (i) g(x)= h(b)= ax+(x)
or (ii) g(x)= h(bx)= (x)c + d.
Suppose (i). Then

a log t/h(t)=
log b \log b

Since h(t) must be entire, the case (i) can not occur.
Suppose (ii). Then

(logt)t log ch(t)= \-lg b-_ + d, a--
log b"

Since h(t) must be holomorphic and univalent in It]p, we have that
a=l, c--b. Further, (x) must be a constant by the univalency of

(t). Thus we obtain the result.
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4. Remark. So far we have been concerned with factorization

f g assuming that g(x) satisfies an equation (1.8). One may conjec-
ture that, if a solution y(x) of (1.1) would be factored as y-f g, then
g would satisfy an equation of the form (1.8). This is not true if f is
admitted to be rational. For example, consider the equation
(4.1) y(x -b 1)- 4y(x)(1 y(x)).
A solution y(x)=sin2(2x) is factored as f g with f(z)-z and g(x)
--sin (2), and g(x) satisfies

g(x+ 1)-- G(g(x))
with G(w)-2w(1-w)1/, which is not one-valued. If we require for

f to be transcendental, then we do not know whether the conjecture
would be true or not.
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