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1. Introduction. A meromorphic function h(x) is said to be
factored if there are a meromorphic function f(x) and an entire func-
tion g(x) such that h(x)=f(g(x)). h(x) is said to be pseudo-prime if
every such factorization h=f o g implies that either f is rational or ¢
is a polynomial [4]. In this paper, we will consider factorization of
solutions of the equation

1.1 y(@+1)=P(y(x)),
where P(w) is a polynomial of degree p=2:
1.2) Pw)=a,w’+---+aw+a, a,#0, p=2.

Any meromorphic solution y(x) of (1.1) is transcendental and entire,
unless it is a constant [6], [7]. If there is a number 2 such that
1.3) 2=P@) and P'W)=1, Pw)=i+w—-D+A,w—2)""+---,
then the difference equation (1.1) possesses an entire solution ¢,(x)
which is expanded asymptotically
1.3) ¢z(x)~2+%"1/m ijcgo Cpx ™™ (lo“i;@—)k
as x tends to oo through D(R, ¢):
1.3 D(R, e)={z|>R, |arg x —x|<(x/2)—e¢}
U{Im [ze-*]1>R}U{Im [xe*]< — R}

where ¢>0 ig arbitrarily fixed, and R(>0) depends on ¢ and ¢,,, in
which m is the integer in (1.3) (4,,%0) [5], [7].

If there is a number 2 such that
1.4) 2=P@) and |[P'Q|>1,
then (1.1) possesses an entire solution s,(x) which is expanded as
1.4) 8;(@)=24+ 2 510,077 =1(b%) (we write P’(2) as b)
where
(1.47) V(&) =24 2 7.0,
is an entire solution of the Schréder equation
(1.1) w(bt)=Pw(t)).
Further we have shown that any entire solution y(x) of (1.1) satisfies
1.5) y(x—p)—2 as p1 oo,
uniformly on any compact set, where 2 is a number for which either
(1.3) or (1.4) holds [7], [8]. If y(x) satisfies (1.5) for a 2 with (1.3),
then y(x) can be written as
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(1.6) Y(@) = g(x +x(2)),
where £(x) is an entire function with period 1, i.e., if we write g(x)
=z +k(x), then y(x) is factored as y=¢,o g and ¢ satisfies

(1.6") 9@ +1)=g(x)+1.
If solution y(x) satisfies (1.5) for a 2 with (1.4), then
.7 Y (@)=, (k(2)b?),

where k(x) is also an entire function with period 1, i.e., if we write
g(x)=r(x)b®, then we have y=+,0 g and ¢ satisfies
1.7) gx+1)=dg ().

Thus, any solution of (1.1) can be factored with either ¢; or
and a function g(x) which satisfies a difference equation (1.6) or (1.7).
Thus it would be natural to ask whether ¢,(x) would be factored as
é:=f o g in which g(x) satisfies some difference equation
(1.8) g@+1)=G(g(x)),
where G(w) is an entire function. Similarly, we ask whether 4,
would be factored as ,= foh in which h(t) satisfies some Schroder
equation
1.8") h(bt)= G(h(t)), with an entire G(w).

In this direction, we prove here

Theorem 1. ¢,(x) can not be factored with transcendental f and
g, where g(x) satisfies (1.8). Similarly ,(t) can not be factored with
transcendental f and h, where h(t) satisfies (1.8).

Theorem 2. Let y(x) be an entire solution of (1.1). Suppose y(x)
is factored as y= f o g with transcendental f and g, where g satisfies
some difference equation of the form (1.8), then we have
1.9) g(x)=ax+x(x) (a=£0) or
1.9) g@)=r(@)c*+d  (c#0)
where k(x) is an entire function with period 1, and a, ¢, d are con-
stants.

For the proof, we need the following lemma, which we proved in
[9]. Professor W. K. Hayman kindly informed me that the lemma had
been obtained by Dr. R. Goldstein [8]. His method is different from
that in [9].

Lemma 1. Let P(w) and Q(w) be polynomials of degree p and q,
respectively, with q=2. Suppose there is a meromorphic function
Jf@) with
(1.10) S(Q@)=P(f(x)).

Then we must have that p=q, and f(x) can not be transcendental.

2. Proof of Theorem 2. Let y(x) be a solution of (1.1) and let
y(x)=f(g(x)) with transcendental f and g, with g(x+1)=G(g(x)),
where G(w) is an entire function. Suppose G(w) be transcendental.
Then, by a Theorem of Clunie [1, p. 77, Theorem 2 (ii)], we obtain
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2.1) lim sup [T(r, f o G)/T(r, f)l=oco.

7—00

On the other hand, we get

T(r, foG)=T(r, Po f)=pT(r, )+0 (1)
by [2, p. 47, Theorem 6.1], which contradicts with (2.1). Thus G(w)
can not be transcendental and must be a polynomial.

By Lemma 1, G(w) can not be of degree>2, since f(x) is transcen-
dental by assumption. Therefore

Gw)=cw+a.

Suppose ¢=1. If a=0, then g(x) and hence y(x)= f(g(x)) would
be periodic, which is a contradiction. Hence, if ¢=1, then a0.
Thus we have that g(x+1)=g(x)+a, and hence g(x)=ax +«(x), with
an entire periodic function «(x) and a constant a=0.

Suppose c#1. Then g(x+1)=cg(x)+a, hence g(x)=«r(x)c"+d
with d=a/(1—¢). Thus we obtain the assertion of the Theorem.

3. Proof of Theorem 1. We note that ¢,(x) is univalent in a
half-plane

H={x;Rex<—R;}

for sufficiently large R, [7]. Suppose ¢,(x)=f(g9(x)) with transcen-
dental f and g, where g satisfies an equation of the form (1.8). By
Theorem 2, g(x) must be written as either in (1.9) or in (1.9). In
either case, f(g(x)) can not be univalent in H unless x(x)=const. In
fact, if x(x)z=const., then there are x, and =z, such that x,#x, and
o, +k(x)=ax,+£(x;). Take a natural number k so large that x;==,
—keH, j=1,2. Then we would have f(g(x))=f(g(x3)), x5, and
f(g(x)) is not univalent in H. The possibility that g(x)=a,c*+d (a,=a
const.) is also excluded by the univalency of f(g(x)) in H.

¥,(t) is univalent in |¢|<p, for a small p,. Suppose V()= f(h(t))
with transcendental f and h, where h(t) satisfies an equation of the
form (1.8), with b=P’(2). Put g(x)=h(®*). Then g(x) satisfies a dif-
ference equation (1.8). By Theorem 2, we have

either (i) g(@)=nh(b")=ax+x(x)

or >ii) g(@)=hb")=«r(x)c"+d.

Suppose (i). Then

_a logt

)= log b log t+x ( log b )

Since h(t) must be entire, the case (i) can not occur.
Suppose (ii). Then
_ (logt\,. __loge
h(t)_fc(log b)t +d, =80

Since (t) must be holomorphic and univalent in |¢|<p,, we have that
a=1, ¢=b. Further, #(x) must be a constant by the univalency of
¥r(t). Thus we obtain the result.
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4. Remark. So far we have been concerned with factorization
fog assuming that g(x) satisfies an equation (1.8). One may conjec-
ture that, if a solution y(x) of (1.1) would be factored as y=f o g, then
g would satisfy an equation of the form (1.8). This is not trueif fis
admitted to be rational. For example, consider the equation
4.1 y(@+1)=4y(@)(1 —y(x)).

A solution y(x)=sin*@2®) is factored as fog with f(z)=2* and g(x)
=gin (2%), and g(x) satisfies

9(x+1)=G(g(x))
with G(w)=2w(1 —w?)'?, which is not one-valued. If we require for

f to be transcendental, then we do not know whether the conjecture
would be true or not.
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