49. On Obstructions of Infinitesimal Lifting

By Takeshi USA

Department of Mathematics, Kyoto University

(Communicated by Heisuke HIRONAKA, M. J. A., June 12, 1984)

Let X be the analytic submanifold of an algebraic manifold P defined by an ideal sheaf I_x . Let E be a holomorphic vector bundle on P and $E|_x$ its restriction to X. Then, we consider the formal completion \hat{P} of P and the formal completion \hat{E} of E along X.

Assume that a holomorphic section $\bar{\sigma}$ of $E|_X$ is given. Then, it is not easy to find a criterion in terms of $\bar{\sigma}$ and $E|_X$ for liftability of the section $\bar{\sigma}$ to a section of \hat{E} . Getting a lifting $\hat{\sigma}$ in \hat{E} of $\bar{\sigma}$ is equivalent to constructing a system $\{\sigma_{(\mu)}\}_{\mu=1}^{\infty}$ of sections of $\{O_P(E) \otimes O_P/I_X^{\mu}\}$ such that (1) $\sigma_{(1)} = \bar{\sigma}$, (2) $\pi_{\mu+1}(\sigma_{(\mu+1)}) = \sigma_{(\mu)}$ for every $\mu \ge 1$ where $\pi_{\mu+1}$; $O_P(E) \otimes O_P/I_X^{\mu+1}$ $\rightarrow O_P(E) \otimes O_P/I_X^{\mu}$ is a natural projection.

When $\sigma_{(\mu)}$ is given, the obstruction for finding a lifting $\sigma_{(\mu+1)}$ of $\sigma_{(\mu)}$ is $\delta_{\mu}(\sigma_{(\mu)})$ which appears in the following sequence,

$$0 \longrightarrow H^{0}(O_{X}(S^{(\mu)}(N^{*}_{X/P}) \otimes E \mid_{X})) \longrightarrow H^{0}(O_{P}(E) \otimes O_{P}/I^{\mu+1}_{X}) \longrightarrow H^{0}(O_{P}(E) \otimes O_{P}/I^{\mu}_{X})$$

$$\delta_{\mu}$$

$$H^{1}(O_{X}(S^{(\mu)}(N^{*}_{X/P}) \otimes E \mid_{X})) \longrightarrow \cdots$$

where $N_{X/P}^*$ is the conormal bundle of X in P. $\delta_{\mu}(\sigma_{(\mu)})$ is called " μ -th obstruction". The following fact should be pointed out here: Even if $\delta_{(\mu_0)}(\sigma_{(\mu_0)})$ does not vanish for some system $\{\sigma_{(\mu)}\}_{\mu=1}^{\mu_0}$ in a course of constructing a system, this does not mean the impossibility of lifting of $\bar{\sigma}$. We may find another system $\{\tau_{(\mu)}\}_{\mu=1}^{\mu_0}$ with $\delta_{(\mu_0)}(\tau_{(\mu_0)})=0$ which extends $\bar{\sigma}$.

Now, let us consider a following special case which is useful in the study of the defining equations. Let P be a projective space $P^{N}(C)$ and E be $\Omega_{P}^{1}(\nu) = \Omega_{P}^{1} \otimes O_{P}(1)^{\otimes \nu}$.

Theorem. Assume the embedding of X into $P = P^N$ is projectively normal. Then the given section $\bar{\sigma}$ of $H^0(X, \Omega_P^1(\nu) \otimes O_X)$ can be lifted to a section of $H^0(\hat{P}, \hat{\Omega}_P^1(\nu))$ if and only if the first obstruction $\delta_1(\bar{\sigma})$ vanishes.

The full proof will be given in [1]. Here, we shall give only a rough sketch of the proof. First, we make a special vector subspace V_0 of $H^0(X, \Omega_P^1(\nu) \otimes O_X)$ and another operator

 $\mathfrak{D}; H^{0}(X, \Omega^{1}_{P}(\nu) \otimes O_{X}) \longrightarrow H^{1}(X, O_{X}(N^{*}_{X/P}) \otimes \Omega^{1}_{P}(\nu))$

by using special property of $\Omega_P^1(\nu)$. And then, we show that on V_0 , $\mathbb D$

equals δ_1 and any section of $H^0(X, \Omega_P^1(\nu) \otimes O_X)$ can be lifted modulo V_0 . Then using a good nature of \mathfrak{D} and projective normality, the above statement is affirmative for V_0 . The difficulty of the problem comes from the fact that δ_1 is not equal to \mathfrak{D} on the whole space $H^0(X, \Omega_P^1(\nu) \otimes O_X)$.

Remark 1. Every algebraic manifold has a projectively normal embedding. Every manifold X embedded in P^{N} has, however, an obstructed section in $H^{0}(X, \Omega_{P}^{1}(\nu) \otimes O_{X})$ for some ν .

Remark 2. When we do not assume that the projective normality of X, the theorem is not true.

As a corollary of the proof, we can get the following fact.

Corollary. Assume that X is embedded in $P = P^N$ projectively normally. Then the normal bundle $N_{X/P}$ splits into direct sum of extendable line bundles $O_X(d_1) \oplus \cdots \oplus O_X(d_r)$ if and only if X is complete intersection of type (d_1, \dots, d_r) .

For another application, see [1].

Reference

[1] T. Usa: On obstructions of infinitesimal lifting (in preparation).