44. On a Multi-valued Differential Equation: An Existence Theorem

By Toru MARUYAMA

Department of Economics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1984)

1. Introduction. Let \mathfrak{F} be a real Hilbert space of finite dimension and a correspondence (=multi-valued mapping) $\Gamma:[0, T]\times\mathfrak{F}\longrightarrow\mathfrak{F}$ is assumed to be given. The compact interval [0, T] is endowed with the usual Lebesgue measure dt. In this paper, we shall establish a sufficient condition which assures the existence of solutions of a multi-valued differential equation of the form:

$$\begin{cases} \dot{x}(t) \in \Gamma(t, x(t)) \\ x(0) = a, \end{cases}$$
(*)

where a is a fixed vector in §. The author is very much indebted to the works of Attouch-Damlamian [2] and Castaing [3], which treat the closely related problems. The purpose of this paper is to reconstruct their theories in the framework of the Sobolev space $\mathcal{W}^{1,2}$. We shall then proceed, in another paper [7], to examining some variational problems governed by a multi-valued differential equation like (*). A couple of existence theorems of optimal solutions for them will be shown there.

2. Assumption. Let us begin by specifying some assumptions imposed on the correspondence Γ .

Assumption 1. Γ is compact-convex-valued; i.e. $\Gamma(t, x)$ is a nonempty, compact and convex subset of \mathcal{F} for all $t \in [0, T]$ and all $x \in \mathcal{F}$.

Assumption 2. The correspondence $x \longrightarrow \Gamma(t, x)$ is upper hemicontinuous (abbreviated as u.h.c.) for each fixed $t \in [0, T]$.

Assumption 3. The correspondence $t \longrightarrow \Gamma(t, x)$ is measurable for each fixed $x \in \mathfrak{G}$. For the concept of "measurability" of a correspondence, see [6] Chap. 6.

Assumption 4. There exists $\psi \in L^2([0, T], \mathbb{R}_+)$ such that $\Gamma(t, x) \subset S_{\psi(t)}$ for every $(t, x) \in [0, T] \times \mathfrak{H}$, where $S_{\psi(t)}$ is the closed ball in \mathfrak{H} with the center 0 and the radius $\psi(t)$.

3. Preliminary Lemmas.

Lemma 1 (Castaing [3]). Let Γ be a correspondence which satisfies Assumption 1-3. And let $x: [0, T] \rightarrow \mathfrak{H}$ be any measurable mapping. Then there exists a closed-valued measurable correspondence $\Sigma: [0, T] \longrightarrow \mathfrak{H}$ such that $\Sigma(t) \subset \Gamma(t, x(t))$ for all $t \in [0, T]$.

Lemma 2. Let A be a non-empty, convex and compact subset of

 \mathfrak{H} and define a subset \mathfrak{X} of the Sobolev space $\mathfrak{W}^{1,2}([0, T], \mathfrak{H})$ by $\mathfrak{X} = \{x \in \mathfrak{W}^{1,2} | \| \dot{x}(t) \| \leq \psi(t) \text{ a.e. and } x(0) \in A\}.$

Then \mathfrak{X} is a non-empty, convex and weakly compact subset of $\mathcal{W}^{1,2}$.

Lemma 3. Suppose that the Assumptions 1-2 are satisfied and let (t^*, x^*) be any element of $[0, T] \times \mathfrak{H}$. If we define a subset $K(t^*; x^*, \varepsilon)$ of $[0, T] \times \mathfrak{H}$ by

 $K(t^*; x^*, \varepsilon) = \{(t, x) \in [0, T] \times \mathfrak{H} | | x - x^* || \leq \varepsilon, t = t^* \}$ for each $\varepsilon > 0$, then the following relation holds good:

 $\Gamma(t^*, x^*) = \bigcap_{\varepsilon > 0} \overline{\operatorname{co}} \Gamma(K(t^*; x^*, \varepsilon)).$

Since the proofs of Lemmas 2, 3 are quite easy, we may omit them. Lemma 4. Suppose that the Assumptions 1, 2 and 4 are satisfied.

Let A be a non-empty, convex and compact subset of §. Then the set $H = \{(a, x, y) \in A \times \mathcal{X} \times \mathcal{X} | \dot{y}(t) \in \Gamma(t, x(t)) \text{ a.e. and } x(0) = y(0) = a\}.$ is weakly compact in $A \times \mathcal{X} \times \mathcal{X}$.

Proof. Since $A \times \mathcal{X} \times \mathcal{X}$ is weakly compact, it is enough to show that H is weakly closed. Since $\mathcal{W}^{1,2}$ is a separable Hilbert space (cf. [1] Theorem 3.5, p. 47), the bounded set \mathcal{X} endowed with the weak topology is metrizable (cf. [6] p. 357). Thus we can safely use a sequence-argument to check the closedness of H.

Let $q_n \equiv \{(a_n, x_n, y_n)\}$ be a sequence in H which weakly converges to some $q^* \equiv (a^*, x^*, y^*) \in A \times \mathcal{X} \times \mathcal{X}$. In order to check $q^* \in H$, we have only to show that $\dot{y}^*(t) \in \Gamma(t, x^*(t))$ a.e. Since $\{\dot{y}_n\}$ weakly converges to \dot{y}^* in L^2 , there exist, for each $j \in N$, some finite elements

 $\dot{y}_{n_{j}+1}, \dot{y}_{n_{j}+2}, \cdots, \dot{y}_{n_{j}+m(j)}$

in $\{\dot{y}_n\}$ and

 $\alpha_{i_j} \geq 0$, $1 \leq i \leq m(j)$, $\sum_{i=1}^{m(j)} \alpha_{i_j} = 1$

such that

$$\begin{cases} \|\dot{y}^* - \sum_{i=1}^{m(j)} \alpha_{ij} \dot{y}_{nj+i}\|_{L^2} \leq 1/j \\ n_{j+1} \geq n_j + m(j). \end{cases}$$

If we denote

 $\eta_{j}(t) = \sum_{i=1}^{m(j)} \alpha_{ij} \dot{y}_{n_{j}+i}(t),$

then

$$\eta_j(t) \in \operatorname{co}\left(\bigcup_{i=1}^{m(j)} \Gamma(t, x_{n_j+i}(t))\right).$$

And there exists a subsequence (no change in notation) of $\{\eta_j\}$ such that

(1) $\eta_j(t) \rightarrow \dot{y}^*(t)$ a.e. On the other hand, since $\{x_n\}$ weakly converges to x^* in $\mathcal{W}^{1,2}$, there exists a subsequence (no change in notation) of $\{x_n\}$ such that (2) $x_n(t) \rightarrow x^*(t)$ a.e.

Hence, for any fixed $t \in [0, T]$, there exists some $n_0(\varepsilon) \in N$ such that $||x_n(t) - x^*(t)|| \leq \varepsilon$ for all $n \geq n_0(\varepsilon)$, i.e. $(t, x_n(t)) \in K(t; x^*(t), \varepsilon)$ for all $n \geq n_0(\varepsilon)$. It follows that $\eta_i(t) \in \operatorname{co} \Gamma(K(t; x^*(t), \varepsilon))$ for sufficiently large

j. Passing to the limit, we have

(3) $\dot{y}^*(t) \in \overline{\mathrm{co}} \Gamma(K(t; x^*(t), \varepsilon))$ a.e.

by (1). Since the relation (3) holds good for every $\varepsilon > 0$, we can conclude that

(4) $\dot{y}^*(t) \in \bigcap_{\epsilon>0} \overline{\text{co}} \Gamma(K(t; x^*(t), \epsilon)) = \Gamma(t, x^*(t)).$ The equality in (4) is guaranteed by Lemma 3. Hence $(a^*, x^*, y^*) \in H.$ Q.E.D.

4. Main Theorem. We are now going to find out a solution of (*) in the Sobolev space $\mathcal{W}^{1,2}$. Define a set $\Delta(a)$ in $\mathcal{W}^{1,2}$ by $\Delta(a) = \{x \in \mathcal{W}^{1,2} | x \text{ satisfies (*) a.e.}\}$ for a fixed $a \in \mathfrak{G}$. The following theorem tells us that $\Delta(a) \neq \phi$ and that Δ depends continuously, in some sense, upon the initial value a.

Theorem. Suppose that Γ satisfies the Assumptions 1-4, and let A be a non-empty, convex and compact subset of \mathfrak{F} . Then

(i) $\Delta(a^*) \neq \phi$ for any $a^* \in A$, and

(ii) the correspondence $\Delta: A \longrightarrow \mathcal{W}^{1,2}$ is compact-valued and u.h.c. on A, in the weak topology for $\mathcal{W}^{1,2}$.

Proof. (i) Fix any $a^* \in A$. If we define a set $\mathscr{X}' \subset \mathscr{X}$ by $\mathscr{X}' = \{x \in \mathscr{X} \mid x(0) = a^*\}$, then \mathscr{X}' is convex and weakly compact in $\mathscr{W}^{1,2}$. Furthermore we define a correspondence $\Phi: \mathscr{X}' \longrightarrow \mathscr{X}'$ by $\Phi(x) = \{y \in \mathscr{X} \mid \dot{y}(t) \in \Gamma(t, x(t)) \text{ a.e.}\}$. Then $\Phi(x) \neq \phi$ for every $x \in \mathscr{X}'$, which can be proved as follows. Let x be any element of \mathscr{X}' . Then, by Lemma 1, there exists some closed-valued measurable correspondence $\Sigma: [0, T] \longrightarrow \mathfrak{F}$ such that $\Sigma(t) \subset \Gamma(t, x(t))$ for all $t \in [0, T]$. By the Measurable Selection Theorem (cf. [6] Chap. 6, § 5), there exists a measurable mapping $\sigma: [0, T] \longrightarrow \mathfrak{F}$ such that

 $\sigma(t) \in \Sigma(t) \subset \Gamma(t, x(t)) \qquad \text{for all } t \in [0, T].$ If we define $y : [0, T] \rightarrow \mathfrak{H}$ by

$$y(t) = a^* + \int_0^t \sigma(s) ds$$
,

then it is clear that $y \in \Phi(x)$. Hence $\Phi(x) \neq \phi$. It can easily be checked that Φ is convex-compact-valued. If we define the *a**-section H_{a^*} of H (in Lemma 4) by $H_{a^*} = \{(a, x, y) \in H \mid a = a^*\}$, then H_{a^*} is obviously weakly compact in $A \times \mathcal{X} \times \mathcal{X}$. And the graph $G(\Phi)$ of Φ is expressed as $G(\Phi) = \operatorname{proj}_{\mathcal{X} \times \mathcal{X}} H_{a^*}$, the projection of $G(\Phi)$ into $\mathcal{X} \times \mathcal{X}$, which is also closed.

Summing up— $-\Phi$ is a convex-compact-valued and u.h.c. Applying now the Ky-Fan's Fixed-Point Theorem ([5]) to the correspondence Φ , we obtain an $x^* \in \mathcal{X}'$ such that $x^* \in \Phi(x^*)$; i.e.

$$\dot{x}^*(t) \in \Gamma(t, x^*(t))$$
 and $x^*(0) = a^*$.

This proves (i).

(ii) Since the compactness of $\Delta(a)$ can be verified by applying again the Mazur's theorem and making use of the Assumptions 1-2,

No. 5]

we may omit the details. Hence we have only to show the u.h.c. of Δ . However it is also obvious because the graph $G(\Delta)$ of Δ can be expressed as

$$G(\varDelta) = \operatorname{proj}_{A \times \mathscr{X}} \{ (a, x, y) \in H \mid x = y \},\$$

which is closed in $A \times \mathfrak{X}$.

Q.E.D.

Remark. Our Theorem does not necessarily hold in the case \mathcal{G} is a Hilbert space of infinite dimension even if it is separable. However if we restrict the domain of Γ to the product of [0, T] and some compact subset of \mathcal{G} , then the theorem revives again for the separable Hilbert space \mathcal{G} of infinite dimension.

References

- Adams, R. A.: Sobolev Spaces. Academic Press, New York, San Francisco, London (1975).
- [2[Attouch, H. and A. Damlamian: On Multivalued Evoluation Equations in Hilbert Spaces. Israel J. Math., 12, 373-390 (1972).
- [3] Castaing, C.: Sur les équations différentielles multivoques. C. R. Acad. Sc. Paris, Série A, 263, 63-66 (1966).
- [4] Castaing, C. and M. Valadier: Equations différentielles multivoques dans les espaces vectoriels localement convexes. R.I.R.O., **3**, 3-16 (1969).
- [5] Fan, K.: Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. Proc. Nat. Acad. Sc. U.S.A., 38, 121–126 (1952).
- [6] Maruyama, T.: Functional Analysis. Keio Tsushin, Tokyo (1980) (in Japanese).
- [7] ——: Variational Problems Governed by a Multi-valued Differential Equation. Proc. Japan Acad. (to appear).