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Local Existence of C.Solution for the Initial.Boundary
Value Problem of Fully Nonlinear Wave Equation

By Yoshihiro SHIBATA*) and Yoshio TSUTSUMITM

(Communicated by KSsaku YOSIDA, M. J. A., May 12, 1984)

We shall consider the local existence in time o C-solutions or
the following initial-boundary value problem"
(M.P) _u+F(t, x, Du)=f(t, x) in [0, T] 9,

u= 0 on [0, T] 3/2,
u(O, x)-- qo(X), (3u)(0, x)-- q,(x) in 2,

where
_v--v-al(t, x, D)Ov -+- a2(t, x, Dx)V,
a(t, x, D)v- Y,j= a(t, x)3v-q- a(t, x)v,
a.(t, x, Dx)V= --,= a(t, x)33v+

__
a(t, x)3v-t-ao(t x)v,

and a.(t, x, D) is a strictly elliptic operator with a--a. Here and
hereafter we use the notations"

=0=/t, =lx, =;...; (]=+...+),
and for any integer L0

DLv=(3tOv ]+lr]=L), DLv=(3t3v ]+lrlgL),
Dv--(3v lal--L), Dxv--(3gv lal<:L).

/2 is a domain in R with compact and C boundary 3. Let T be
some positive constant.

In the case of/2--R the local existence in time of C-solutions of
fully nonlinear wave equations is already known (see, e.g., [2]), since
we can reduce fully nonlinear equations to quasilinear systems by the
method due to Dionne [1], the local solvability of which has extensively
been studied (see, e.g., Kato [3] and [4]). However, we can not apply
that method to the initial-boundary value problem. Accordingly, for
the. initial-boundary value problem the Nash-Moser technique has often
been used in order to overcome the. so-called derivative loss which
results rom the. fully nonlinearity of the equation (see, e.g., [5], [7],
[9], [10] and [11]). Moreover, because o the difficulty of the derivative
loss it has been unknown whether the C-solution exists or not even
when 0(x), (x) and f(t, x) are. in a class of C.

In the present paper we give the local existence theorem of C-solutions of Problem (M.P). Our method is essentially based on the
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ellipticity of the differential operator a(t, x, Dx) in the equation (M.P),
and the Nash-Moser technique is not used. We make the equation
(M.P) a coupled system of a nonlinear wave equation and a nonlinear
elliptic equation to overcome the difficulty of the derivative loss. The
details of the proof will appear elsewhere.

We first list notations. For p with 1=<pc L(/2) and I" I, denote
the usual L" function space defined on D and its norm, respectively.
For a vector-valued function f=(f,...,f) we put
+f,l,. For a nonnegative integer L we put

H()={v e L() Dv< +} and v.=
Especially H(9) denotes =,H(9). We denote the completion in
H’(9) of C(9) by H(9). For a nonnegative integer L, () denotes
the set of all functions having all derivatives of orderL continuous
and bounded in where is g or (0, T)Xg. For--a<b+,
a nonnegative integer k and a Banaeh space E, C([a, b];E) denotes
the set of all E-valued functions having all derivatives of orderk

C ;H-continuous in [a, b]. For u e =0 ([a, b] (9)) we put
[u[,,=supo Du(t)[[.

For positive integers s, i, a function H=H(t, x, ,), ,= (,,. ., ,), defined
on [0, T]R, vectors u=(u,, ..., u), v=(v, ..., v) e R, we put

)(t, x u+=v)l, =o.(dH)(t, x, u)(v, v,) (3*H/I
We next make the following assumptions on and F.
Assumption [A]. (1) The coefficients a(t, x), a(t, x), a(t, x) and

ao(t, x) of are real-valued functions belonging to ([0, T] ).
(2) F(t, x, ) is a real-valued unction defined on

[0, T]{R(n+)(n+e)+i;]]30}
for some 00 such that all its derivatives o any order and itself are
continuous and bounded, F(t, x, 0)=0 and (dF)(t, x, 0)=0.

(3) Functions F, F, F and Fo are defined as ollows"
(dF)(t, x, Du)Dv oF(t, x, Du)33v

--,= F(t, x, Du)v
+=oF(t, x, Du)v+Fo(t, x, Du)v.

Then F(t, x, )=F(t, x, ) and there exists a positive constant d such
that

,= [aid(t, x)+F(t, x, )]2d[[, l+F(t, x, )2d
for all (t, x) e [0, T] , [30 and e R.

Before we state the theorem, we define a certain class of data as
follows.

Definition. We shall say that a pair of unctions (P0(x), (x),
f(t, x)) with po(X) e (), (x) e () and f(0, x) e 0() belongs to
if there exists a p(x)e 0() such that

and
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2(x)+ al(O, x, Dlx)l(X)/ ao.(O, x, Dx)o(X)
+ F(O, x, Do(X), D(x), (x)) f(0, x) in

Now we state the following local existence theorem.
Theorem. (a) We assume that Assumption [A] holds. Let be

a domain in R with compact and C boundary . We put Lo
=max(2[n/2]+4, [n/2]+7). Let L be any integer with LLo. Let
o e H+(9), e H+1(9) and

f e C+([0, T] L(9)){ ;H-=0 C([0, T] (D))}
and let (o, , f) e satisfy the compatibility condition of order 2L+ 1.
Then there exists a To with OToT depending only on n, , o,o,

[],o+, If o,O,, F and such that Problem (M.P) has a unique
local solution u(t, x)

u(t, .) e {+ C([0, T0]" H+-(9) H(9))} D C+([0, T0] L(9)).j =0

(b) In addition to the assumptions of (a), let o
and f e=C([0, T] H(9)), and let o, and f satisfy the compat-
ibility condition of order infinity. Then the above local solution is in
c([o, T0] 9).

Remark. (1) In the statement of the above theorem the compat-
ibility condition of order 2L+1 means that the boundary values of

Oiul:0 (0g]g2L+ 1) are compatible with the boundary condition. For
details of the compatibility condition, see [9, 2.3], [10, 10] and [11,
4.2].

(2) We note that there actually exist the non-zero data (0(x),
(x), f(t, x)) e satisfying the compatibility condition of order infinity
under Assumption [A]. For example, it is satisfied if 0(x)e C(),
(x) e C(9) and f(0, x) e C(9) are sufficiently small in certain norms
(see [9, 2.3] and [10, p. 44]).

(3) We note that To is independent of the size of [[0[,,
[[+],+ and [f],0,r for an integer NLo.

(4) By combining the above theorem and the results of [11] we
obtain a unique global C-solution for Problem (M.P) with =O--d,
if the data are sufficiently smooth and small and the domain 9 satisfies
certain conditions (for details, see [11]).

(5) Our method is essentially based on the ellipticity of the dif-
ferential operator a(t, x, D) in . We also have results analogous
to the above theorem for the nonlinear Klein-Gordon equation and the
nonlinear SchrSdinger equation.
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