41. Local Existence of C[∞]-Solution for the Initial-Boundary Value Problem of Fully Nonlinear Wave Equation

By Yoshihiro SHIBATA*) and Yoshio TSUTSUMI**)

(Communicated by Kôsaku Yosida, M. J. A., May 12, 1984)

We shall consider the local existence in time of C^{∞} -solutions for the following initial-boundary value problem:

(M.P)
$$\begin{aligned} & \pounds u + F(t, x, \bar{D}^2 u) = f(t, x) & \text{in } [0, T] \times \Omega, \\ & u = 0 & \text{on } [0, T] \times \partial \Omega, \\ & u(0, x) = \psi_0(x), \quad (\partial_t u)(0, x) = \psi_1(x) & \text{in } \Omega, \end{aligned}$$

where

$$\begin{split} \mathcal{L}v = \partial_t^2 v + a_1(t, x, \bar{D}_x^1) \partial_t v + a_2(t, x, \bar{D}_x^2) v, \\ a_1(t, x, \bar{D}_x^1) v = \sum_{j=1}^n a_2^j(t, x) \partial_j v + a_1^0(t, x) v, \\ a_2(t, x, \bar{D}_x^2) v = -\sum_{i,j=1}^n a_2^{ij}(t, x) \partial_i \partial_j v + \sum_{j=1}^n a_1^j(t, x) \partial_j v + a_0(t, x) v, \end{split}$$

and $a_2(t, x, \overline{D}_x^2)$ is a strictly elliptic operator with $a_2^{ij} = a_2^{ji}$. Here and hereafter we use the notations:

 $\partial_t = \partial_0 = \partial/\partial t$, $\partial_j = \partial/\partial x_j$, $\partial_x^{\alpha} = \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}$ $(|\alpha| = \alpha_1 + \cdots + \alpha_n)$, and for any integer $L \ge 0$

$$\begin{array}{ll} D^L v = (\partial_i^j \partial_x^a v \ ; \ j + |\alpha| = L), & \overline{D}^L v = (\partial_i^j \partial_x^a v \ ; \ j + |\alpha| \leq L), \\ D^L_x v = (\partial_x^a v \ ; |\alpha| = L), & \overline{D}_x^L v = (\partial_x^a v \ ; |\alpha| \leq L). \end{array}$$

 Ω is a domain in \mathbb{R}^n with compact and C^{∞} boundary $\partial \Omega$. Let T be some positive constant.

In the case of $\Omega = \mathbb{R}^n$ the local existence in time of C^{∞} -solutions of fully nonlinear wave equations is already known (see, e.g., [2]), since we can reduce fully nonlinear equations to quasilinear systems by the method due to Dionne [1], the local solvability of which has extensively been studied (see, e.g., Kato [3] and [4]). However, we can not apply that method to the initial-boundary value problem. Accordingly, for the initial-boundary value problem the Nash-Moser technique has often been used in order to overcome the so-called derivative loss which results from the fully nonlinearity of the equation (see, e.g., [5], [7], [9], [10] and [11]). Moreover, because of the difficulty of the derivative loss it has been unknown whether the C^{∞} -solution exists or not even when $\psi_0(x)$, $\psi_1(x)$ and f(t, x) are in a class of C^{∞} .

In the present paper we give the local existence theorem of C^{∞} solutions of Problem (M.P). Our method is essentially based on the

^{*&#}x27; Supported in part by the Sakkokai Foundation. Department of Mathematics, University of Tsukuba.

^{**&#}x27; Department of Pure and Applied Sciences, College of General Education. University of Tokyo.

ellipticity of the differential operator $a_2(t, x, \overline{D}_x^2)$ in the equation (M.P), and the Nash-Moser technique is not used. We make the equation (M.P) a coupled system of a nonlinear wave equation and a nonlinear elliptic equation to overcome the difficulty of the derivative loss. The details of the proof will appear elsewhere.

We first list notations. For p with $1 \leq p \leq \infty L^p(\Omega)$ and $\|\cdot\|_p$ denote the usual L^p function space defined on Ω and its norm, respectively. For a vector-valued function $f = (f_1, \dots, f_s)$ we put $||f||_p = ||f_1||_p + \dots$ $+ \|f_s\|_p$. For a nonnegative integer L we put

 $H^{L}(\Omega) = \{ v \in L^{2}(\Omega) ; \| \overline{D}_{x}^{L}v \|_{2} < +\infty \} \text{ and } \| v \|_{2,L} = \| \overline{D}_{x}^{L}v \|_{2}.$ Especially $H^{\infty}(\Omega)$ denotes $\bigcap_{L=1}^{\infty} H^{L}(\Omega)$. We denote the completion in $H^{1}(\Omega)$ of $C_{0}^{\infty}(\Omega)$ by $H^{1}_{0}(\Omega)$. For a nonnegative integer $L, \mathfrak{B}^{L}(\overline{\mathbb{O}})$ denotes the set of all functions having all derivatives of order $\leq L$ continuous and bounded in $\overline{\mathcal{O}}$, where \mathcal{O} is Ω or $(0, T) \times \Omega$. For $-\infty \leq a < b \leq +\infty$, a nonnegative integer k and a Banach space $E, C^{k}([a, b]; E)$ denotes the set of all *E*-valued functions having all derivatives of order $\leq k$ continuous in [a, b]. For $u \in \bigcap_{j=0}^{L} C^{j}([a, b]; H^{L-j}(\Omega))$ we put |u|

$$|_{L,[a,b]} = \sup_{a \leq t \leq b} \| D^L u(t) \|_2$$

For positive integers s, i, a function $H = H(t, x, \nu), \nu = (\nu_1, \dots, \nu_s)$, defined on $[0, T] \times \overline{\Omega} \times \mathbf{R}^s$, vectors $u = (u_1, \dots, u_s), v_j = (v_1^j, \dots, v_s^j) \in \mathbf{R}^s$, we put

 $(d_{\boldsymbol{v}}^{i}H)(t, x, u)(v_{1}, \cdots, v_{i}) = (\partial^{i}H/\partial\eta_{1}\cdots\partial\eta_{i})(t, x, u + \sum_{j=1}^{i}\eta_{j}v_{j})|_{\eta_{1}} = \cdots = \eta_{i}=0.$

We next make the following assumptions on \mathcal{L} and F.

Assumption [A]. (1) The coefficients $a_2^{i}(t, x), a_2^{ij}(t, x), a_1^{i}(t, x)$ and $a_0(t, x)$ of \mathcal{L} are real-valued functions belonging to $\mathfrak{B}^{\infty}([0, T] \times \overline{\Omega})$.

(2) $F(t, x, \lambda)$ is a real-valued function defined on

 $[0, T] \times \overline{\Omega} \times \{\lambda \in \mathbf{R}^{(n+1)(n+2)+1}; |\lambda| \leq 3\lambda_0\}$

for some $\lambda_0 > 0$ such that all its derivatives of any order and itself are continuous and bounded, F(t, x, 0) = 0 and $(d_{\lambda}F)(t, x, 0) = 0$.

(3) Functions F_2^j , F_2^{ij} , F_1^j and F_0 are defined as follows:

$$(d_{\lambda}F)(t, x, \overline{D}^{2}u)\overline{D}^{2}v = \sum_{j=0}^{n} F_{2}^{j}(t, x, \overline{D}^{2}u)\partial_{j}\partial_{t}v$$

$$-\sum_{i,i=1}^{n}F_{2}^{ij}(t,x,\overline{D}^{2}u)\partial_{i}\partial_{j}v$$

$$+\sum_{j=0}^{n}F_{1}^{j}(t, x, \overline{D}^{2}u)\partial_{i}v + F_{0}(t, x, \overline{D}^{2}u)v$$

Then $F_{2}^{ij}(t, x, \lambda) = F_{2}^{ji}(t, x, \lambda)$ and there exists a positive constant d such that

 $\sum_{i,j=1}^{n} [a_{2}^{ij}(t,x) + F_{2}^{ij}(t,x,\lambda)] \xi_{i} \xi_{j} \ge 2d |\xi|^{2},$ $1+F_{2}^{0}(t,x,\lambda)\geq 2d$ for all $(t, x) \in [0, T] \times \overline{\Omega}$, $|\lambda| \leq 3\lambda_0$ and $\xi \in \mathbb{R}^n$.

Before we state the theorem, we define a certain class of data as follows.

Definition. We shall say that a pair of functions $(\psi_0(x), \psi_1(x), \psi_1(x))$ f(t, x) with $\psi_0(x) \in \mathfrak{B}^2(\overline{\Omega}), \psi_1(x) \in \mathfrak{B}^1(\overline{\Omega})$ and $f(0, x) \in \mathfrak{B}^0(\overline{\Omega})$ belongs to \mathcal{D} if there exists a $\psi_2(x) \in \mathfrak{B}^0(\overline{\Omega})$ such that

$$\| \overline{D}_{x}^{2} \psi_{0} \|_{\infty} + \| \overline{D}_{x}^{1} \psi_{1} \|_{\infty} + \| \psi_{2} \|_{\infty} \leq \lambda_{0}$$

and

$$\begin{split} \psi_2(x) + a_1(0, x, \bar{D}_x^1)\psi_1(x) + a_2(0, x, \bar{D}_x^2)\psi_0(x) \\ + F(0, x, \bar{D}_x^2\psi_0(x), \bar{D}_x^1\psi_1(x), \psi_2(x)) = f(0, x) \quad \text{in } \mathcal{Q}. \end{split}$$

Now we state the following local existence theorem.

Theorem. (a) We assume that Assumption [A] holds. Let Ω be a domain in \mathbb{R}^n with compact and C^{∞} boundary $\partial \Omega$. We put L_0 $= \max (2[n/2]+4, [n/2]+7)$. Let L be any integer with $L \ge L_0$. Let $\psi_0 \in H^{2L+2}(\Omega), \ \psi_1 \in H^{2L+1}(\Omega)$ and

 $f \in C^{2L+1}([0, T]; L^2(\Omega)) \cap \{ \bigcap_{j=0}^{2L} C^j([0, T]; H^{2L-j}(\Omega)) \}$

and let $(\psi_0, \psi_1, f) \in \mathcal{D}$ satisfy the compatibility condition of order 2L+1. Then there exists a T_0 with $0 < T_0 \leq T$ depending only on n, Ω , $\|\psi_0\|_{2, 2L_0+2}$, $\|\psi_1\|_{2, 2L_0+1}$, $\|f|_{2L_0, [0, T]}$, F and \mathcal{L} such that Problem (M.P) has a unique local solution u(t, x):

 $u(t, \cdot) \in \{ \bigcap_{j=0}^{2L+1} C^{j}([0, T_{0}]; H^{2L+2-j}(\Omega) \cap H^{1}_{0}(\Omega)) \} \cap C^{2L+2}([0, T_{0}]; L^{2}(\Omega)).$

(b) In addition to the assumptions of (a), let $\psi_0 \in H^{\infty}(\Omega)$, $\psi_1 \in H^{\infty}(\Omega)$ and $f \in \bigcap_{j=1}^{\infty} C^{\infty}([0, T]; H^j(\Omega))$, and let ψ_0, ψ_1 and f satisfy the compatibility condition of order infinity. Then the above local solution is in $C^{\infty}([0, T_0] \times \overline{\Omega})$.

Remark. (1) In the statement of the above theorem the compatibility condition of order 2L+1 means that the boundary values of $\partial_t^j u|_{t=0}$ $(0 \le j \le 2L+1)$ are compatible with the boundary condition. For details of the compatibility condition, see [9, § 2.3], [10, § 10] and [11, § 4.2].

(2) We note that there actually exist the non-zero data $(\psi_0(x), \psi_1(x), f(t, x)) \in \mathcal{D}$ satisfying the compatibility condition of order infinity under Assumption [A]. For example, it is satisfied if $\psi_0(x) \in C_0^{\infty}(\Omega)$, $\psi_1(x) \in C_0^{\infty}(\Omega)$ and $f(0, x) \in C_0^{\infty}(\Omega)$ are sufficiently small in certain norms (see [9, § 2.3] and [10, p. 44]).

(3) We note that T_0 is independent of the size of $\|\psi_0\|_{2,2N+2}$, $\|\psi_1\|_{2,2N+1}$ and $\|f\|_{2N,[0,T]}$ for an integer $N > L_0$.

(4) By combining the above theorem and the results of [11] we obtain a unique global C^{∞} -solution for Problem (M.P) with $\mathcal{L}=\partial_t^2-\mathcal{A}$, if the data are sufficiently smooth and small and the domain Ω satisfies certain conditions (for details, see [11]).

(5) Our method is essentially based on the ellipticity of the differential operator $a_2(t, x, \overline{D}_x^2)$ in \mathcal{L} . We also have results analogous to the above theorem for the nonlinear Klein-Gordon equation and the nonlinear Schrödinger equation.

References

- P. Dionne: Sur les problèmes de Cauchy hyperboliques bien posés. J. Analyse Math., 10, 1-90 (1962).
- [2] F. John: Delayed singularities formation in solutions of nonlinear wave

equations in higher dimensions. Comm. Pure Appl. Math., 29, 649-681 (1976).

- [3] T. Kato: Quasilinear equations of evolution with applications to partial differential equations. Springer Lecture Notes, 448, 25-70 (1975).
- [4] ——: Linear and quasi-linear equations of evolution of hyperbolic type. C. I. M. E., II, 127–191 (1976).
- [5] S. Klainerman: Global existence for nonlinear wave equations. Comm. Pure Appl. Math., 33, 43-101 (1980).
- [6] S. Klainerman and G. Ponce: Global small amplitude solutions to nonlinear evolution equations. Comm. Pure Appl. Math., 36, 133-141 (1983).
- [7] P. H. Rabinowitz: Periodic solutions of nonlinear hyperbolic partial differential equations II. ibid., 22, 15-39 (1969).
- [8] J. Shatah: Global existence of small solutions to nonlinear evolution equations. J. Differential Eqs., 46, 409-425 (1982).
- [9] Y. Shibata: On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain. Funk. Ekva., 25, 303-345 (1982).
- [10] Y. Shibata: On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first order dissipation in the exterior domain. Tsukuba J. Math., 7(1), 1-68 (1983).
- [11] Y. Shibata and Y. Tsutsumi: Global existence theorem of nonlinear wave equation in exterior domain (to appear in Lect. Notes in Numerical and Applied Analysis). Kinokuniya, Tokyo, North-Holland, Amsterdam-New York-Oxford.