38. On Pluricanonical Maps for 3-Folds of General Type

By Kenji Matsuki
Department of Mathematics, University of Tokyo
(Communicated by Kunihiko Kodarra, m. J. A., April 12, 1984)

The purpose of this note is to outline our recent result on the pluricanonical maps for nonsingular projective 3-folds of general type. Details will be published elsewhere.

Let X be a nonsingular projective 3-dimensional variety over the complex number field, which is called a " 3 -fold" in short. The canonical divisor K_{X} is said to be "nef" if the intersection number $K_{X} \cdot C \geqq 0$ for any curve C on X. Moreover, K_{X} is said to be "big" if $\kappa\left(K_{X}, X\right)=\operatorname{dim} X$ (cf. Iitaka [6] and Reid [10]), i.e., if X is of general type. For any n with $h^{0}\left(X, \mathcal{O}_{X}\left(n K_{X}\right)\right) \neq 0$, we have the n-ple canonical linear system $\left|n K_{X}\right|$ and associated with this, we have the rational $\operatorname{map} \Phi_{\left|n K_{X}\right|}$.

Main Theorem. Let X be a nonsingular projective 3-fold whose canonical divisor K_{X} is nef and big.

Then
(i) $\Phi_{\mid 7 K_{X \mid}}$ is birational with the possible exceptions of
a) $\chi\left(\mathcal{O}_{X}\right)=0$ and $K_{X}^{3}=2$, or
b) $\left|3 K_{X}\right|$ is composed of pencils,
i.e., $\operatorname{dim} \Phi_{\left|3 K_{X}\right|}(X)=1$,
(ii) $\Phi_{\left|n K_{X}\right|}$ is birational for $n \geqq 8$.

Corollary. Assume further that K_{X} is ample. Then $\Phi_{\left|n K_{X \mid}\right|}$ is birational for $n \geqq 7$.

The hypothesis that K_{X} is ample is required only to derive the inequality

$$
\chi\left(\mathcal{O}_{X}\right)<0 \quad \text { (cf. Yau [11]) }
$$

There is a conjecture that this inequality holds even when K_{X} is nef and big. Therefore, once this conjecture is established, we will have a sharper result that $\Phi_{\left|n K_{X}\right|}$ is birational for $n \geqq 7$ whenever K_{X} is nef and big.
X. Benveniste announced in [2] the same result as our main theorem. But his proof is incomplete. Modifying his argument, we can complete the proof and get a better result when K_{X} is ample.
§ 1. The following theorem about a surface plays a crucial role in our proof of the main theorem. We replace the condition $h^{0}\left(S, \mathcal{O}_{S}(m R)\right)$ $\geqq 7$ in Proposition 2-0 of Benveniste [1] by (*) below, which is weaker than the former.

Theorem. Let S be a nonsingular projective surface, $R \in \operatorname{Pic} S$ a nef divisor on S, and m a positive integer which satisfy the following condition (*).
(*) Take arbitrary two distinct points $x_{1}, x_{2} \in S$. Let $\pi: S^{\prime \prime} \rightarrow S$ be the blowing-up at x_{1} and $x_{2}, L_{1}:=\pi^{-1}\left(x_{1}\right)$ and $L_{2}:=\pi^{-1}\left(x_{2}\right)$. Then we have $\left|\pi^{*}(m R)-2 L_{1}-2 L_{2}\right| \neq \phi$.

Then $\Phi_{\left|K_{S}+m R\right|}$ is birational in the following two cases
(i) $R^{2} \geqq 2$ and $m \geqq 3$,
(ii) $R^{2}=1$ and $m \geqq 4$.
§2. Let X be a nonsingular projective 3 -fold whose canonical divisor K_{X} is nef and big. Setting $W_{n}:=\Phi_{\mid n K_{X \mid}}(X)$ for a positive integer n, we have the following assertions:
(i) $\operatorname{dim} W_{n} \geqq 2$ for $n \geqq 4$.
(ii) If $\operatorname{dim} W_{3}=1$, then one of the two cases α), β) holds.

First we consider the following commutative diagram and introduce some notations.

f is a succession of blowing-ups with nonsingular centers such that $g:=\Phi_{\left|3 K_{X}\right|} \cdot f$ is a morphism, the diagram

is the Stein factorization, $b:=\operatorname{deg}(s)$, and S is a general fiber of h.
ג) $b \cdot\left\{S \cdot f^{*}\left(K_{X}\right)^{2}\right\}=2, \chi\left(\mathcal{O}_{X}\right)=1$ and $K_{X}^{3}=6$,
β) $b=1, S \cdot f^{*}\left(K_{X}\right)^{2}=1$ and S is a nonsingular projective surface of general type, so letting $\pi: S \rightarrow S_{0}$ be the morphism onto the minimal model S_{0} of S, and K_{0} the canonical divisor of S_{0}, we have $K_{0}^{2}=1$, and $\mathcal{O}_{S}\left(\pi^{*}\left(K_{0}\right)\right) \cong \mathcal{O}_{S}\left(\left.f^{*}\left(K_{X}\right)\right|_{S}\right)$.
§3. Proof of the main Theorem. We show that $\Phi_{\left|n K_{X}\right|}$ is birational in each of the following four cases, which is sufficient by $\S 2$ and by hypotheses.

Case 1. $\quad \operatorname{dim} W_{3} \geqq 2$ and $n \geqq 8$,
Case 2. $\operatorname{dim} W_{3} \geqq 2, \chi\left(\mathcal{O}_{X}\right) \neq 0$ or $K_{X}^{3} \neq 2$, and $n=7$,
Case 3. $\left.\operatorname{dim} W_{3}=1, \beta\right)$ and $n \geqq 8$,
Case 4. $\left.\operatorname{dim} W_{3}=1, \alpha\right)$ and $n \geqq 8$,
where α) and β) are the cases described in $\S 2$.
In Cases 1, 2 and 4, the assertion can be obtained by using the theorem in § 1. To get the result in Case 3, we use the fact that $\Phi_{\left|n K_{s}\right|}$
is birational for $n \geqq 5$ for any nonsingular projective surface of general type, which was obtained by Bombieri [3].
§4. Proof of Corollary. By the inequality $\chi\left(\mathcal{O}_{X}\right) \leqq-K_{X}^{3} / 64<0$, we can show that $\operatorname{dim} W_{3} \geqq 2$. So it is clear from Cases 1 and 2 in the proof of the main theorem.

References

[1] X. Benveniste: Sur les applications pluricanoniques des variétés de type très général en dimension 3 (1984) (preprint).
[2] --: Variétés de dimension 3 de type général tel que le système linéaire défini par un multiple du diviseur canonique soit sans point base. Note aux C.R.A.S., 289, série A (1979).
[3] E. Bombieri: The Pluricanonical Map of a complex surface. Several Complex Variables I, Maryland 1970. Lect. Notes in Math., vol. 155, Springer, pp. 35-87 (1970).
[4] R. Hartshorne: Algebraic Geometry. Graduate Texts in Math., 156, Springer (1970).
[5] H. Hironaka: Resolution of singularities of an algebraic variety over a field of characteristic zero. I. Ann. of Math., 79, 109-203 (1964).
[6] S. Iitaka: Algebraic Geometry "An Introduction to Birational Geometry of Algebraic Varieties". Graduate Texts in Math., 76, Springer (1981).
[7] Y. Kawamata: A generalization of Kodaira-Ramanujam's vanishing theorem. Math. Ann., 261, 43-46 (1982).
[8] --: Cone of curves of algebraic varieties. (1983) (preprint).
[9] C. P. Ramanujam: Supplement to the article "Remarks on the Kodaira vanishing theorem". J. Indian Math. Soc., 38, 121-124 (1974).
[10] M. Reid: Projective morphisms according to Kawamata (1983) (preprint).
[11] S.-T. Yau: Calabi's conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. USA, 74, 1798-1799 (1977).

