4. An Application of the Perturbation Theorem for m-Accretive Operators. II

By Noboru Okazawa
Department of Mathematics, Science University of Tokyo
(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1984)

1. Introduction and statement of the result. This note is concerned with the homogeneous Dirichlet problem for a nonlinear elliptic equation

$$
\begin{equation*}
-\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(\left|\frac{\partial u}{\partial x_{j}}\right|^{p-2} \frac{\partial u}{\partial x_{j}}\right)+\beta(x, u)=f \quad \text { on } \Omega, \tag{1}
\end{equation*}
$$

where Ω is a bounded domain in \boldsymbol{R}^{n} with smooth boundary.
Let $W_{0}^{1, p}(\Omega)$ be the usual Sobolev space. We consider only realvalued functions in the case of $p \geqq 2$. Then it follows from the Poincaré inequality that $W_{0}^{1, p}(\Omega) \subset L^{2}(\Omega)$. Setting

$$
\phi(u)=\frac{1}{p} \sum_{j=1}^{n} \int_{\Omega}\left|\frac{\partial u}{\partial x_{j}}\right|^{p} d x \quad \text { for } u \in W_{0}^{1, p}(\Omega)
$$

and $\phi(u)=+\infty$ otherwise, ϕ is a proper lower semicontinuous convex function on $L^{2}(\Omega)$. The subdifferential $\partial \phi$ of ϕ is given by

$$
\partial \phi(u)=-\sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(\left\lfloor\left.\frac{\partial u}{\partial x_{j}}\right|^{p-2} \frac{\partial u}{\partial x_{j}}\right) \quad \text { for } u \in D(\partial \phi) \subset W_{0}^{1, p}(\Omega)\right.
$$

and is m-accretive in $L^{2}(\Omega)$ (see e.g. [1] or [2]).
Let $\beta \in C^{1}(\Omega \times J)$, where J is an open interval on R containing the origin. We assume that
(i) $\beta(x, 0)=0$ for every $x \in \Omega$, and $\partial \beta / \partial s \geqq 0$ on $\Omega \times J$.
(ii) for every $x \in \Omega, \beta(x, \cdot): J \rightarrow \boldsymbol{R}$ is onto.

Then we can introduce the m-accretive operator $\tilde{\beta}$ in $L^{2}(\Omega)$:

$$
\begin{gathered}
D(\tilde{\beta})=\left\{u \in L^{2}(\Omega) ; u(x) \in J(\text { a.e. on } \Omega), \beta(x, u(x)) \in L^{2}(\Omega)\right\}, \\
\tilde{\beta} u(x)=\beta(x, u(x)) \quad \text { for } u \in D(\tilde{\beta}) .
\end{gathered}
$$

The purpose of this note is to prove the following
Theorem 1. Let $A=\partial \phi$ and $B=\tilde{\beta}$ be m-accretive operators as above. Assume that there are nonnegative constants c, a and b $\left[b<p^{p}(p-1)^{-(p-1)}\right]$ such that on $\Omega \times J$

$$
\begin{equation*}
\sum_{j=1}^{n}\left|\frac{\partial \beta}{\partial x_{j}}(x, s)\right|^{p} \leqq\left\{c+a s^{2}+b[\beta(x, s)]^{2}\right\}\left[\frac{\partial \beta}{\partial s}(x, s)\right]^{p-1} \tag{2}
\end{equation*}
$$

Then $A+B=\partial \phi+\tilde{\beta}$ with domain $D(A) \cap D(B)$ is m-accretive in $L^{2}(\Omega)$.
Noting that $A=\partial \phi$ is strictly accretive (for a precise estimate see Simon [7]), we obtain

Corollary 2. For every $f \in L^{2}(\Omega)$ there exists a unique solution $u \in D(\partial \phi) \cap D(\tilde{\beta})$ of the equation (1).

Remark 3. Let

$$
\left.D(\psi)=\left\{u \in L^{2}(\Omega) ; u(x) \in J \text { (a.e. on } \Omega\right), \int_{0}^{u(x)} \beta(x, s) d s \in L^{1}(\Omega)\right\}
$$

Setting

$$
\psi(u)=\int_{\Omega} \int_{0}^{u(x)} \beta(x, s) d s d x \quad \text { for } u \in D(\psi)
$$

and $\psi(u)=+\infty$ otherwise, we see that $\check{\beta}$ is the subdifferential of $\psi: \tilde{\beta}=\partial \psi$. Therefore, Theorem 1 implies that

$$
\partial(\phi+\psi)=\partial \phi+\partial \psi .
$$

2. Proofs. We first note that $\tilde{\beta}$ is m-accretive in $L^{2}(\Omega)$ if conditions (i) and (ii) are satisfied. In fact, let $v \in L^{2}(\Omega)$. Then for almost all $x \in \Omega$ the equation

$$
s+\beta(x, s)=v(x)
$$

has a unique solution $s=u(x)$ such that $|u(x)| \leqq|v(x)|$. Therefore, $u \in D(\tilde{\beta})$ and $v(x)=(1+\tilde{\beta}) u(x)$.

Let $u \in C_{0}^{1}(\bar{\Omega})$ and $\varepsilon>0$. Setting $w(x)=(1+\varepsilon \tilde{\beta})^{-1} u(x)$, we see from the implicit function theorem that $w \in C_{0}^{1}(\bar{\Omega})$ and

$$
\begin{equation*}
\frac{\partial w}{\partial x_{j}}(x)=\left[1+\varepsilon \frac{\partial \beta}{\partial s}(x, w(x))\right]^{-1}\left[\frac{\partial u}{\partial x_{j}}(x)-\varepsilon \frac{\partial \beta}{\partial x_{j}}(x, w(x))\right] . \tag{3}
\end{equation*}
$$

So, we have

$$
\left|\frac{\partial w}{\partial x_{j}}\right|^{p} \leqq 2^{p-1}\left[\left|\frac{\partial u}{\partial x_{j}}\right|^{p}+\varepsilon\left(\frac{\partial \beta}{\partial s}\right)^{-(p-1)}\left|\frac{\partial \beta}{\partial x_{j}}\right|^{p}\right]
$$

and hence

$$
\begin{equation*}
\phi(w) \leqq 2^{p-1} \phi(u)+2^{p-1} \frac{\varepsilon}{p} \int_{\Omega}\left(\frac{\partial \beta}{\partial s}\right)^{-(p-1)} \sum_{j=1}^{n}\left|\frac{\partial \beta}{\partial x_{j}}\right|^{p} d x . \tag{4}
\end{equation*}
$$

Now let $B=\tilde{\beta}$. Then we have
Lemma 4. $W_{0}^{1, p}(\Omega)$ is invariant under $(1+\varepsilon B)^{-1}, \varepsilon>0$, if the assumption of Theorem 1 is satisfied.

Proof. We may assume that $\partial \beta / \partial s \geqq 1$ on $\Omega \times J$. In fact, $\beta(x, s)$ in (2) can be replaced by $\beta(x, s)+s$. We see from (4) and (2) that for $u \in C_{0}^{1}(\bar{\Omega})$

$$
\phi\left((1+\varepsilon B)^{-1} u\right) \leqq 2^{p-1} \phi(u)+2^{p-1} p^{-1} \varepsilon\left[c \mu(\Omega)+a\|u\|^{2}+b\left\|B_{\mathrm{s}} u\right\|^{2}\right],
$$

where

$$
\mu(\Omega)=\int_{\Omega} d x
$$

and B_{c} is the Yosida approximation of B :

$$
B_{s} u(x)=\varepsilon^{-1}\left[u(x)-(1+\varepsilon B)^{-1} u(x)\right]=\beta(x, w(x)) ;
$$

note further that $\|w\| \leqq\|u\|$.
Let $u \in W_{0}^{1, p}(\Omega)$. Then there is a sequence $\left\{u_{m}\right\} \subset C_{0}^{1}(\bar{\Omega})$ such that $u_{m} \rightarrow u(m \rightarrow \infty)$ in $W_{0}^{1, p}(\Omega)$. Noting that

$$
(1+\varepsilon B)^{-1} u_{m} \rightarrow(1+\varepsilon B)^{-1} u(m \rightarrow \infty) \quad \text { in } L^{2}(\Omega)
$$

we see from the lower semicontinuity of ϕ that

$$
\begin{aligned}
\phi\left((1+\varepsilon B)^{-1} u\right) & \leqq \liminf _{m \rightarrow \infty} \phi\left((1+\varepsilon B)^{-1} u_{m}\right) \\
& \leqq 2^{p-1} \phi(u)+2^{p-1} p^{-1} \varepsilon\left[c \mu(\Omega)+a\|u\|^{2}+b\left\|B_{\varepsilon} u\right\|^{2}\right]
\end{aligned}
$$

i.e., $(1+\varepsilon B)^{-1} u \in W_{0}^{1, p}(\Omega)$.
Q.E.D.

The proof of Theorem 1 is based on the following
Lemma 5 (cf. [5]). Let A and B be m-accretive operators in $L^{2}(\Omega)$, with $D(A) \cap D(B)$ non-empty. Assume that there exist a constant $b(0 \leqq b<1)$ and a nondecreasing function $\psi_{0}(r) \geqq 0$ of $r \geqq 0$ such that for all $u \in D(A)$ and $\varepsilon>0$,

$$
\left(A u, B_{\varepsilon} u\right) \geqq-\psi_{0}(\|u\|)-b\left\|B_{s} u\right\|^{2} .
$$

Then $A+B$ is also m-accretive in $L^{2}(\Omega)$.
This lemma holds even if B is multi-valued.
Proof of Theorem 1. Let $A=\partial \phi$ and $B=\tilde{\beta}$. We shall show that for all $u \in D(A)$ and $\varepsilon>0$,
(5) $\quad\left(A u, B_{s} u\right) \geqq-p^{-p}(p-1)^{p-1}\left[c \mu(\Omega)+a\|u\|^{2}+b\left\|B_{\varepsilon} u\right\|^{2}\right]$.

Let $u \in D(A)$. Then $u \in W_{0}^{1, p}(\Omega)$. Setting $w(x)=(1+\varepsilon B)^{-1} u(x)$, we see from Lemma 4 that $w \in W_{0}^{1, p}(\Omega)$ and hence (3) holds for almost all $x \in \Omega$. So, we have

$$
\begin{aligned}
\left(A u, B_{\varepsilon} u\right)= & -\int_{\Omega} \sum_{j=1}^{n} \frac{\partial}{\partial x_{j}}\left(\left|\frac{\partial u}{\partial x_{j}}\right|^{p-2} \frac{\partial u}{\partial x_{j}}\right) \varepsilon^{-1}[u(x)-w(x)] d x \\
= & \sum_{j=1}^{n} \int_{\Omega}\left|\frac{\partial u}{\partial x_{j}}\right|^{p-2} \frac{\partial u}{\partial x_{j}}\left(1+\varepsilon \frac{\partial \beta}{\partial s}\right)^{-1}\left(\frac{\partial \beta}{\partial x_{j}}+\frac{\partial \beta}{\partial s} \frac{\partial u}{\partial x_{j}}\right) d x \\
\geqq & \int_{\Omega}\left(1+\varepsilon \frac{\partial \beta}{\partial s}\right)^{-1} \frac{\partial \beta}{\partial s} \sum_{j=1}^{n}\left|\frac{\partial u}{\partial x_{j}}\right|^{p} d x \\
& -\int_{\Omega}\left(1+\varepsilon \frac{\partial \beta}{\partial s}\right)^{-1} \sum_{j=1}^{n}\left|\frac{\partial u}{\partial x_{j}}\right|^{p-1}\left|\frac{\partial \beta}{\partial x_{j}}\right| d x .
\end{aligned}
$$

Therefore, we obtain

$$
\left(A u, B_{\varepsilon} u\right) \geqq-\frac{1}{p}\left(\frac{p-1}{p}\right)^{p-1} \int_{\Omega}\left(\frac{\partial \beta}{\partial s}\right)^{-(p-1)} \sum_{j=1}^{n}\left|\frac{\partial \beta}{\partial x_{j}}\right|^{p} d x
$$

where we have assumed that $\partial \beta / \partial s \geqq 1$ on $\Omega \times J$. Consequently, (5) follows from (2).
Q.E.D.
3. Remarks. (I) If in particular $J=\boldsymbol{R}$, then condition (ii) imposed on β is unnecessary.
(II) In Theorem 1 suppose that $p=2$ and $c=0$ in (1). Then the assertion is true even if $\Omega=R^{n}$ (see Okazawa [6]). In this case we see that $H^{1}\left(\boldsymbol{R}^{n}\right)$ is invariant under $(1+\varepsilon B)^{-1}, \varepsilon>0$.
(III) Let γ be a multi-valued m-accretive operator in \boldsymbol{R}; namely, γ be a maximal monotone set in $\boldsymbol{R} \times \boldsymbol{R}$. Assume that $0 \in D(\gamma)$ and $0 \in \gamma(0)$. Let $\tilde{\gamma}$ be the associated m-accretive operator in $L^{2}(\Omega)$:

$$
\begin{aligned}
& D(\tilde{\gamma})=\left\{u \in L^{2}(\Omega) ; \text { there is } v \in L^{2}(\Omega)\right. \text { such that } \\
&v(x) \in \gamma(u(x)) \text { a.e. on } \Omega\}, \\
& \tilde{\gamma} u(x)=\gamma(u(x)) \quad \text { for } u \in D(\tilde{\gamma}) .
\end{aligned}
$$

Then we have

Theorem 6. Let $A+B$ be the m-accretive operator obtained in Theorem 1, and $C=\tilde{\gamma}$. Then $A+B+C=\partial \phi+\tilde{\beta}+\tilde{\gamma}$ is also m-accretive in $L^{2}(\Omega)$.

In fact, we have

$$
\begin{aligned}
\left((A+B) u, C_{s} u\right) & \geqq\left(A u, C_{\imath} u\right) \\
& =\int_{\Omega} \gamma_{\bullet}^{\prime}(u(x)) \sum_{j=1}^{n}\left|\frac{\partial u}{\partial x_{j}}\right|^{p} d x \geqq 0 .
\end{aligned}
$$

We note that Theorem 6 is a generalization of Theorem 3.1 in Brezis-Crandall-Pazy [3]. For another generalization we refer to Konishi [4] and Barbu [1].

References

[1] V. Barbu: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publ., Leiden, The Netherlands (1976).
[2] H. Brézis: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. Math. Studies, vol. 5, North-Holland, Amsterdam and New York (1973).
[3] H. Brézis, M. G. Crandall, and A. Pazy: Perturbations of nonlinear maximal monotone sets in Banach space. Comm. Pure Appl. Math., 23, 123144 (1970).
[4] Y. Konishi: A remark on perturbation of m-accretive operators in Banach space. Proc. Japan Acad., 47, 452-455 (1971).
[5] N. Okazawa: Singular perturbations of m-accretive operators. J. Math. Soc. Japan, 32, 19-44 (1980).
[6] -: An application of the perturbation theorem for m-accretive operators. Proc. Japan Acad., 59A, 88-90 (1983).
[7] J. Simon: Régularité de la solution d'une équation non linéaire dans \boldsymbol{R}^{N}. Lect. Notes in Math., vol. 665, Springer-Verlag, Berlin and New York, pp. 205-227 (1978).

