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1. Introduction and statement of the result. This note is con-
cerned with the homogeneous Dirichlet problem for a nonlinear elliptic
equation

2, 0 ou P~ ou _
(1) _ng 0x, (‘ 0x; 0x, )-I—ﬁ(x,u)—f on £,

where 2 is a bounded domain in R” with smooth boundary.

Let Wi?(2) be the usual Sobolev space. We consider only real-
valued functions in the case of p=2. Then it follows from the
Poincaré inequality that Wiyr(Q) L*(2). Setting

dw=L 3 j P gx  for ue Win(2)
p i=1e| 0w,
and ¢(u)= + oo otherwise, ¢ is a proper lower semicontinuous convex
function on L*(2). The subdifferential 94 of ¢ is given by
_ 0 ou P~ ou Lo
op=—33 ( 35| e ) for u € DS W ()
and is m-accretive in L*(2) (see e.g. [1] or [2]).

Let e C'(2xJ), where J is an open interval on R containing the
origin. We assume that

(i) P(x,0)=0 for every x € 2, and 98/3s=0 on 2 X J.

(ii) for every x e £, p(x, -): J—R is onto.

Then we can introduce the m-accretive operator j in L*Q):
D) ={ue L*Q); u(x) e J (a.e. on 2), p(x, u(x)) € L*(2)},
Bu(x)=p(x, u(x))  for u e D(f).

The purpose of this note is to prove the following

Theorem 1. Let A=3d¢ and B=f be m-accretive operators as
above. Assume that there are monnegative constants c, a and b
[b<p?(p—1)-®-Y] such that on 2XJ

@ BP9 serast+ ol 91| 2L @ 0]
J

Jj=1
Then A+ B=2d¢+f with domain D(A)N D(B) is m-accretive in L*(Q2).
Noting that A =09¢ is strictly accretive (for a precise estimate see
Simon [7]), we obtain
Corollary 2. For every f e L¥(Q2) there exists a unique solution
u € D@g) N D(B) of the equation (1).
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Remark 3. Let

D(y)= {u e LAQ); @) e J (a.e. on ), j:‘” B, 8)ds € L‘(.Q)}.
Setting

u ()
\h(u)=Jg L B(x, s)dsdx for w € D(y)

and (u)=+oo otherwise, we see that j is the subdifferential of
Yr: f=0+¢. Therefore, Theorem 1 implies that
3(p+ 1) =3¢+
2. Proofs. We first note that g is m-accretive in L) if con-
ditions (i) and (ii) are satisfied. In fact, let v e L*(2). Then for
almost all 2 € 2 the equation
s+p(x, 9)=v(x)
has a unique solution s=wu(x) such that |u(x)|<|v(x)|. Therefore,
u € D(B) and v(x)= 1+ pu(z).
Let u e Ci(2) and ¢>0. Setting w(x)=(1+¢p)'u(x), we see from
the implicit function theorem that w ¢ C}(2) and
) 2 @=[1+: L@ we@| [ 2L @—e @ we@))]
o, 0s ox; ox,
So, we have

ow pgzp_l[_%p+€(§£)—<y—1> ap p]
o, ox; 08 ox,
and hence
(4) ¢(w)§2""¢(u)+21’"ij (%)—(p—l)i ap pd
p Ja2\os =1l oy

Now let B=f§. Then we have

Lemma 4. v2(02) is tnvariant under 1+4eB)!, >0, if the as-
sumption of Theorem 1 is satisfied.

Proof. We may assume that d8/ds=1 on 2xJ. In fact, B(x, s)
in (2) can be replaced by g(x, s)+s. We see from (4) and (2) that for
ue C¥2)

(L +¢B)~'u) <27~'¢(u)+27~'p~"elep(@) +al|ulP+b | Baulfl,
where
p(Q):L dz
and B, is the Yosida approximation of B:
Bau(x)=¢"[u(@) — 1 +eB)'u(x)] =z, w®)) ;
note further that ||w| < u].

Let u e Wy?(2). Then there is a sequence {u,}CCi2) such that

Up—U (M—>00) in Wi?(Q). Noting that
A+eB)uy—1+eB)'u (Im—>c0) in L¥Q),
we see from the lower semicontinuity of ¢ that
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#((A+eB)'u)<lim inf (L +eB)~'u,)

m—oo

277w +27"p~lelep(@) +a | ulf +b [ Baulfl,
i.e., A4+eB)'u e Wir(Q). Q.E.D.
The proof of Theorem 1 is based on the following
Lemma 5 (cf. [5]). Let A and B be m-accretive operators in LX),
with D(A)ND(B) non-empty. Assume that there exist a constant
b (0<b<1) and a nondecreasing function J,(r)=0 of r=0 such that
for all w e D(A) and ¢>0,
(Au, Bu)= —o(lul)—b | Bl
Then A+ B is also m-accretive in L*(Q2).
This lemma holds even if B is multi-valued.
Proof of Theorem 1. Let A=034 and B=f. We shall show that
for all u € D(A) and ¢>0,
(5) (Au, Bw)=—p-?(p—1)"""[ep(@+a|u|+0 || Bu|1.
Let we D(A). Then ue Wir(R). Setting w(x)=1+eB) 'u(x), we see
from Lemma 4 that w ¢ Wi?(2) and hence (3) holds for almost all x € 2.
So, we have

(Au, Ba)=— J Z xj(
i

=2 Ju \ 4 _
o2, oz, )e [u(x) —w(x)ldx

AU ECTIE 2

A

=1 0%, 0s 0, as 0x;
B )“aﬁ
= 1
—.[a( te 08 0s 721 axj
] (1e2) 2 2 g
7=1 890,

Therefore, we obtain

(Au, Ba))> *l(ﬁ)‘“ j (?ﬁ)"”“’ s 98 P g,
p\ P 2\ 0s =1 ox,
where we have assumed that 5/ds=1on 2 xJ. Consequently, (5) fol-
lows from (2). Q.E.D.

3. Remarks. (1) If in particular J =R, then condition (ii)
imposed on B is unnecessary.

(II) In Theorem 1 suppcse that p=2 and ¢=0 in (1). Then the
assertion is true even if 2=R" (see Okazawa [6]). In this case we see
that H'(R"™) is invariant under (1+¢B)-*, ¢>0.

(ITII) Let 7 be a multi-valued m-accretive operator in R ; namely,
7 be a maximal monotone set in RXR. Assume that 0e D(¥) and
0¢e7(0). Let 7 be the associated m-accretive operator in L*(£):

D) ={u € L*(2) ; there is v € L*(2) such that
v(x) e T (u(x)) a.e. on £},
Fue)=7w(x)) for u € D(?).
Then we have
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Theorem 6. Let A+ B be the m-accretive operator obtained in
Theorem 1, and C=7. Then A+B+C=0d¢+5+7 is also m-accretive
in L¥(Q).

In fact, we have

(A+B)u, Cau)=(Au, C.u)

n p
—[ e | 2
a =1 0w,
We note that Theorem 6 is a generalization of Theorem 3.1 in Brezis-

Crandall-Pazy [3]. For another generalization we refer to Konishi
[4] and Barbu [1].

dx=0.
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