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1. Introduction and statement of the result. This note is con-
cerned with the homogeneous Dirichlet problem for a nonlinear elliptic
equation

1 (I u - u ) +(x, u)--f on

where 9 is a bounded domain in R with smooth boundary.
Let W,(9)be the usual Sobolev space. We consider only real-

valued functions in the case of p2. Then it follows from the
Poincar6 inequality that W’(9)cL(9). Setting

= - dx forueW,’()

and (u)= + otherwise, is a proper lower semicontinuous convex
function on L(9). The subdifferential 3 of is given by

O(u)

and is m-accretive in L(9) (see e.g. [1] or [2]).
Let fle C(9 x J), where J is an open interval on R containing the

origin. We assume that
( fl(x, 0)=0 or every x e , and 3fl/3sO o.n J.
(ii) for every x e , fl(x, .)" JR is onto..

Then we can intro.duce the m-accretive operator in L(9)
D()= (u e L(9) u(x) e J (a.e. on ), (x, u(x)) L()),

fu(x)=(x, u(x)) or u e D().
The purpose of this note is to prove the following
Theorem 1. Let A=3 and B= be m-accretive operators as

above. Assume that there are nonnegative constants c, a and b
[bpp(p-1)-(-’] such that on J

]p
Then A+B=O+ with domain D(A) D(B) is m-accretive in L(9).

Noting that A=0 is strictly accretive (for a precise estimate see
Simon [7]), we obtain

Corollary 2. For every f e L(9) there exists a unique solution
u e D(O) D() of the equation (1).
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Remark 3. Let

D(@)= u e L2(tg) u(x) e J (a.e. on 9), fl(x, s)ds e LI(f2)

Setting

(u)= (x, s)dsdx or u e D()

and @(u)=+ otherwise, we see that is the subdifferential of

@’=3@. Therefore, Theorem 1 implies that

(+)=+.
2. Proofs. We first note that is m-accretive in L(9) if con-

ditions (i) and (ii) are satisfied. In fact, let v e L(9). Then or
almost all x e 9 the equation

s+(x, s)= v(x)
has a unique solution s=u(x) such that [u(x)v(x). Therefore,
u e D() and v(x) (1 +)u(x).

Let u e C(}) and e} 0. Setting w(x) (1 +)-u(x), we see from
the implicit function theorem that w e C(9) and

Ox Ox
So, we have

and hence

Now let B=. Then we have
Lemma 4. W’p(9) is invariant under (l+eB)-, 0, if the as-

sumption of Theorem 1 is satisfied.
Proof. We may assume that 3fl/3sl o.n /2 J. In fact, (x, s)

in (2) can be replaced by (x, s)+ s. We see from (4) and (2) that for
u e C(9)

((l+B)-lu)2"-l(u)+2P-lp-ls[ct(f2)+a Ilull2+ b IIBu I],
where

Z(9) dx

and B is the Yosida approximation o.f B"
Bu(x)=-[u(x)--(1 +B)-u(x)]=fl(x, w(x))

note urther that w =< u II.
Let u e W’(9). Then there is a sequence {u}C(9) such that

uu (m-c) in W,’(9). Noting that
(1 +B)-u-.(1+B)-u (m-c) in L(9),

we see from the lower semicontinuity of that
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((1+B)-’u) ____< lim in 0((1 +B)-u)
<__2-(u)+2-p-’[cl(f2)+a ]u [+b []Bu ]],

i.e., (1 +eB)-u e W’(9). Q.E.D.
The proof of Theorem 1 is based on the following
Lemma 5 (cf. [5]). Let A and B be m-accretive operators in L(9),

with D(A)D(B) non-empty. Assume that there exist a constant
b (0g b1) and a nondecreasing function @o(r)O of rO such that

for all u e D(A) and 0,
(Au, Bu) o(lU [[) b Bu .

Then A+B is also m-accretive in L(9).
This lemma holds even if B is multi-valued.
Pro.of of Theorem 1. Let A=3 and B=. We shall show that

or all u e D(A) and e0,
(5) (Au, Bu)-p-(p-1)-’[c(9)+allul+b Bu[].
Let u e D(A). Then u e W,(9). Setting w(x)=(l+B)-u(x), we see
rom Lemma 4 that w e W,(9) and hence (3) holds for almost all x e 9.
So, we have

(Au, B,u)=-- e-l[u(x)--w(x)]dx

:1 x 3s / 3x 3s 3x

s / 2= x
Therefore, we obtain

where we have assumed that 3fl/3sl on 9 J. Consequently, (5)o1-
lows rom (2). Q.E.D.. Remarks. (I) If in particular J=R, then condition (ii)
imposed on fl is unnecessary.

(II) In Theorem. 1 suppose that p=2 and c=0 in (1). Then the
.assertion is true even i 9=R (see Okazawa [6]). In this case we see
that H(Rn) is invariant under (I+B)-, 0.

(III) Let Y be a multi-valued m-accretive operator in R; namely,
7 be a maximal monotone set in RR. Assume that 0 e D() and
0 e (0). Let 7 be the associated m-accretive operator in L(9)

D()= (u e L(9) there is v e L(9) such that
v(x) e (u(x)) a.e. on

?u(x)=r(u(x)) for u e D().
Then we have
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Theorem 6. Let A-B be the m-accretive operator obtained in
Theorem 1, and C=. Then A+B+C--3++ is also m-accretive
in

In fact, we have
((A + B)u, Cu) >__ (Au, Cu)

V.(u(x)) Ou p

dx >= O.
T2

We note that Theorem 6 is a generalization of Theorem. 3.1 in Breziso
Crandall-Pazy [3]. For another generalization we refer to Konishi
[4] and Barbu [1].
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