1. A Short Proof of a Theorem Concerning Homeomorphisms of the Unit Circle^{*)}

By Shinzô KAWAMURA Department of Mathematics, Yamagata University

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1984)

1. In [4], Rieffel classified the C^* -algebras associated with irrational rotations on the unit circle S^1 in the complex plane. Recently these C^* -algebras have played an important rôle in the theory of operator algebras.

The author and Takemoto [1] extended the Rieffel's result to the case of C^* -algebras associated with monothetic compact abelian groups. A compact abelian group G is said to be monothetic if there exists a homomorphism from the group Z of all integers to a dense subgroup of G (cf. [5, 2.3]). In [1] and [2], we considered more general cases. Namely, we studied the C^* -algebras associated with topologically transitive compact dynamical systems. A dynamical system (Ω, σ) is said to be topologically transitive if the homeomorphism σ admits a point ω in the compact space Ω such that the orbit $O(\omega)$ $(=\{\sigma^n(\omega): n \in \mathbb{Z}\})$ is dense in Ω (cf. [6, 5.4]). So we are interested in the existence and the classification of such dynamical systems. In case $\Omega = S^{1}$, every topologically transitive homeomorphism σ is conjugate to an irrational rotation. It is well-known that this theorem was established by Poincaré [2]. Nowadays we can see several kinds of proofs in many books, in which the rotation number of σ plays an important rôle. In this note, we give a short and elementary proof without rotation numbers.

2. Two homeomorphisms σ_1 and σ_2 of S^1 are said to be conjugate if there exists a homeomorphisms h on S^1 such that $\sigma_1 = h\sigma_2 h^{-1}$. For a real number θ , we denote by R_{θ} the rotation: $R_{\theta}(e^{2\pi i x}) = e^{2\pi i (x+\theta)}$ on S^1 . We shall prove the following equivalences.

Theorem. Let σ be a homeomorphism of S^1 . Then the following statements are equivalent;

(1) O(z) is dense in S^1 for some z in S^1 ,

(2) O(z) is dense in S^1 for every z in S^1 ,

(3) σ is conjugate to R_{θ} for some irrational number θ (0 $< \theta < 1/2$). When σ satisfies the condition (1) or (2), the rotation R_{θ} in (3) is uniquely determined.

^{*)} Partly supported by the Grant-in-Aid for Scientific Research (No. 58540056), the Ministry of Education, Science and Culture, Japan.

For the proof of equivalences, we have only to show the implication $(1)\Rightarrow(3)$. To prove this, we need the following lemma.

Lemma. Let σ be a homeomorphism of S^1 satisfying the condition (1) in the theorem. Then, for any integer k, σ^k admits no fixed point.

Proof. We first suppose that there exists a fixed point ω for σ . Then the restriction σ_0 of σ to $S^1 - \{\omega\}$ can be regarded as a homeomorphism of the real line **R**. Hence, for any z in S^1 , O(z) is not dense in S^1 .

Next, we suppose that there exists a fixed point ω for σ^k $(k \neq \pm 1)$. For z_1 and z_2 in S^1 , we denote by (z_1, z_2) the set $\{e^{2\pi i x} | x_1 < x < x_2\}$, where x_1 and x_2 are the real numbers determined by the relation: $z_1 = e^{2\pi i x_1}$ $(0 \leq x_1 < 1)$ and $z_2 = e^{2\pi i x_2}$ $(x_1 \leq x_2 < x_1 + 1)$. Then the open interval $(\omega, \sigma(\omega))$ is mapped onto itself or $(\sigma(\omega), \omega)$ by σ^k and the restriction of σ^k to $(\omega, \sigma(\omega))$ becomes an order-isomorphism or an anti-order-isomorphism, where the order in the interval (z_1, z_2) is considered as the one induced by the usual order in (x_1, x_2) . Therefore, σ^{2k} becomes an order-isomorphism of $(\omega, \sigma(\omega))$ onto itself, and we can assume that the point z satisfying the condition (1) belongs to this interval. Hence the set $\{\sigma^{2nk}(z) | n \in Z\}$ has exactly two limit points in S^1 . Since

$$O(z) = \bigcup_{i=0}^{2k-1} \{ \sigma^{2nk+i}(z) \mid n \in \mathbb{Z} \},\$$

O(z) has only finite limit points in S^1 . This means that the closure of O(z) does not coincide with S^1 . Q.E.D.

Proof of Theorem. (1) \Rightarrow (3). Let y and y_0 be the real numbers in [0, 1) determined by the relations: $z = e^{2\pi i y}$ and $\sigma(e^{2\pi i 0}) = e^{2\pi i y_0}$. Since σ admits no fixed point in S^1 , there exists a homeomorphism f of [0, 1) onto $[y_0, y_0+1)$ such that $\sigma(e^{2\pi i x}) = e^{2\pi i f(x)}$. We extend f to a homeomorphism F of the real line **R** onto itself as follows;

$$F(x+n) = f(x) + n \qquad (0 \leq x < 1, n \in \mathbb{Z}).$$

Furthermore we consider the homeomorphism T of R defined by the translation: $x \rightarrow x+1$ ($x \in R$). We denote by G the subgroup of all homeomorphisms of R generated by F and T. Put $G_1 = \{F^p T^q(y) | p, q \in Z\}$. The set G_1 is dense in R because O(z) is dense in S^1 , and the order in the subset G_1 of the real line induces an order in G. Namely we define an order \leq in G as follows; for p, p', q and q' in Z,

$$F^pT^q {\buildrel \leq} F^{p\prime}T^{q\prime} \qquad ext{if} \quad F^pT^q(y) {\buildrel \leq} F^{p\prime}T^{q\prime}(y).$$

Then (G, \leq) becomes a totally ordered abelian group. Moreover we can show that the order \leq is archimedian. Suppose that $F^pT^q > I$, that is, $F^pT^q(y) > I(y) = y$. Since F^p and T^q are monotonic increasing functions on \mathbf{R} , so is $H = F^pT^q$. Since $\sigma^p(e^{2\pi i x}) = e^{2\pi i H(x)}$ ($0 \leq x < 1$), the preceding lemma implies that there is a non-zero distance between the graph of H and the diagonal line in $\mathbf{R} \times \mathbf{R}$. Since H(y) > y, there exists a positive number ε such that $H(x) > x + \varepsilon$ for all x in \mathbf{R} . Thus $H^{\varepsilon}(y)$

No. 1]

Therefore, for any element g > I, there exists a natural $> y + k\varepsilon$. number k such that $H^k \succ g$. We know that every archimedian totally ordered abelian group is order-isomorphic to a subgroup of R ([5, 8.1.2]). Hence (G, \leq) is order-isomorphic to a subgroup G_2 of **R** by an order isomorphism Φ , and we assume that $\Phi(T)=1$. Since the subset $\{F^{p}T^{q}(y)|F^{p}T^{q}(y)>y\}$ of G_{1} does not have the smallest element, the subset $\{F^{p}T^{q} | F^{p}T^{q} \geq I\}$ of G does not, either. Hence the set of positive real numbers in G_2 does not have the smallest element, so that G_2 is a dense subgroup of **R**. Since $\Phi(F^pT^q) = p\Phi(F) + q$, we have $G_2 = \{p\Phi(F)\}$ $+q \mid p, q \in \mathbb{Z}$. Hence $\Phi(F)$ must be an irrational number θ and belongs to the open interval (0, 1), because $0 = \Phi(I) < \Phi(F) < \Phi(T) = 1$. Since both G_1 and G_2 are dense in **R**, the order-isomorphism $k': F^pT^q(y) \rightarrow p^{\theta} + q$ $(G_1 \rightarrow G_2)$ can be extended to the unique homeomorphism k of **R**. We put $h(e^{2\pi ix}) = e^{2\pi ik(x)}$ if $0 < \theta < 1/2$. Then it follows that $h\sigma h^{-1} = R_{\theta}$. In the case where $1/2 \le \theta \le 1$, putting $h(e^{2\pi i x}) = e^{-2\pi i k(x)}$, we have $h\sigma h^{-1}$ $=R_{1-\theta}$. The uniqueness of R_{θ} is easily shown by seeing the set $\{e^{2\pi i n\theta} | n \in \mathbb{Z}\}$ of eigenvalues of R_{θ} (cf. [6, Definition 5.8]). Q.E.D.

Acknowledgement. The author is grateful to his colleague S.-I. Watanabe for helpful discussions.

References

- S. Kawamura and H. Takemoto: C*-algebras associated with shift dynamical systems (to appear in J. Math. Soc. Japan, 36 (1984)).
- [2] ——: On the classification of C^* -algebras associated with shift dynamical systems (to appear in the Proceedings of the Japan-U.S. Seminar on Geometric Methods in Operator Algebras (1983)).
- [3] H. Poincaré: Mémoire sur les courbes définies par une équation différentielle. Oeuvres t.1 (1928).
- [4] M. Rieffel: C*-algebras associated with irrational rotations. Pacific J. Math., 93, 415-429 (1981).
- [5] W. Rudin: Fourier Analysis on Groups. Interscience Publ. (1962).
- [6] P. Walter: An introduction to ergodic theory. G.T.M. 79, Springer Verlag, New York-Heidelberg-Berlin (1982).