28. An Algebraic Computation of the Alexander Polynomial of a Plane Algebraic Curve

By Toshitake KOHNO
Department of Mathematics, Nagoya University

(Communicated by Kunihiko Kodaira, M. J. A., March 12, 1983)

1. Introduction and the statement of the result. Let C be the algebraic curve in C^2 defined by a reduced polynomial f. We denote by $\Omega'_{C^2}(*C)$ the algebra of the rational differential forms on C^2 which are holomorphic on the complement $X = C^2 - C$. Let $V_\alpha: \Omega'_{C^2}(*C) \to \Omega'_{C^2}(*C)$ be the regular connection in the sense of Deligne ([1]) defined by $V_\alpha \varphi = d\varphi + \alpha d \log f \wedge \varphi$ with a real number α . We denote by $H^j(\Omega_{C^2}(*C), V_\alpha)$ the j-th cohomology group of the de Rham complex

$$\cdots \longrightarrow \Omega_{C^2}^j(*C) \xrightarrow{\nabla \alpha} \Omega_{C^2}^{j+1}(*C) \longrightarrow \cdots$$

In [5] A. Libgober defined the Alexander polynomial of a plane algebraic curve. Let us review the definition.

Definition 1.1. Let \overline{C} be an irreducible algebraic curve in P^2 . We take a complex line H_{∞} such that H_{∞} intersects \overline{C} transversally. Let C denote $\overline{C} \cap (P^2 - H_{\infty})$ and let X be the complement of C in $P^2 - H_{\infty}$.

Let $p: X^{ab} \to X$ be an infinite cyclic covering of X. Then the ring of the Laurent polynomials $C[t^{-1}, t] = \Lambda$ operates on $H^1(X^{ab}; C)$ by means of the deck transformations. The Λ -module $H^1(X^{ab}; C)$ has a presentation of the form

$$\Lambda/_{(f_1(t))} \oplus \cdots \oplus \Lambda/_{(f_k(t))}$$

with some polynomials $f_1(t), \dots, f_k(t)$. We call the product $\prod_{j=1}^k f_j(t)$ the Alexander polynomial of \overline{C} (or C).

Remarks 1.2. i) In the proof of Theorem (1.3), we show that $\dim_{\mathcal{C}} H^1(X^{ab}; \mathcal{C})$ is finite.

ii) The Alexander polynomial of the curve C is determined up to unit and does not depend on the choice of a line H_{∞} .

We have the following

Theorem 1.3. Let $C \cap C^2$ be an irreducible algebraic curve which intersects transversally with the line at infinity. Let h_a denote $\dim_C H^1(\Omega_{C^2}(*C, \mathcal{V}_a))$ for a real number α . Let $\Delta_C(t)$ be the Alexander polynomial of C. Then we have

$$\Delta_c(t) = \prod_{0 \le \alpha \le 1} (t - \exp 2\pi \sqrt{-1} \alpha)^{h\alpha}.$$

Moreover the numbers α with $h_{\alpha} \neq 0$ are rational numbers with $n\alpha \in \mathbb{Z}$, where we denote by n the degree of our curve C.

2. Proof of the theorem. Let \overline{C} be the algebraic closure of C

in P^2 and let X_n be the n-fold cyclic covering of $X = C^2 - C$ defined by $X_n = \{(x_1, x_2, x_3) \in C^3; x_3^n = f(x_1, x_2), x_3 \neq 0\}$. Let \overline{X}_n be the algebraic closure of X_n in P^3 . Thus, we obtain the branched covering $\pi : \overline{X}_n \rightarrow P^2$ branched along \overline{C} . Let $\mu : V \rightarrow \overline{X}_n$ be a resolution of singularity. We put $D = \mu^{-1}(\pi^{-1}(\overline{C}))$. Let $i : \overline{X}_n - \pi^{-1}(\overline{C}) \rightarrow V$ be the injection defined by $i = (\mu|_{V-D})^{-1}$. We have the following proposition due to R. Randell.

Proposition 2.1 (Randell [7]). The injection $i: \overline{X}_n - \pi^{-1}(\overline{C}) \to V$ induces an isomorphism $i^*: H^1(V; \mathbf{Q}) \cong H^1(\overline{X}_n - \pi^{-1}(\overline{C}); \mathbf{Q})$.

Let γ be a generator of the group of the deck transformations of the cyclic covering $p_n: X_n \to X$. We denote by $H^1(X_n; C)_k$ the subspace of $H^1(X_n; C)$ defined by

$$H^{1}(X; C)_{k} = \{ \omega \in H^{1}(X_{n}; C); \gamma^{*}\omega = \exp 2\pi \sqrt{-1}(k/n) \}.$$

Lemma 2.2. Let $j: X_n \longrightarrow \overline{X}_n - \pi^{-1}(\overline{C})$ be the inclusion. Then, the induced homomorphism $j^*: H^1(\overline{X}_n - \pi^{-1}(\overline{C}); C)$ is injective and image $j^* = \bigoplus_{0 < k \le n-1} H^1(X_n; C)_k$.

Proof. Let H_{∞} be the line at infinity. From the cohomology exact sequence of the pair $(\overline{X}_n - \pi^{-1}(\overline{C}), X_n)$ and the Thom isomorphism $H^k(\overline{X}_n - \pi^{-1}(\overline{C}), X_n) \cong H^{k-2}(\pi^{-1}(H_{\infty} - \overline{C}))$, we have the injectivity of j^* . We obtain the exact sequence

$$0 \longrightarrow H^{1}(\overline{X}_{n} - \pi^{-1}(\overline{C})) \stackrel{j^{*}}{\longrightarrow} H^{1}(X_{n}) \longrightarrow H^{2}(\overline{X}_{n} - \pi^{-1}(\overline{C}), X_{n}) \longrightarrow 0.$$

On the other hand $H^1(X_n; C)_0 = C$, which is represented by $d \log f$. This completes the proof of the second assertion.

Let $\bar{\omega}: X^{ab} \to X_n$ be the covering map such that $p_n \circ \bar{\omega} = p$.

Lemma 2.3. The covering map $\bar{\omega}$ induces an injection

$$\overline{w}^*: \bigoplus_{1 \leq k \leq n-1} H^1(X_n; C)_k \longrightarrow H^1(X^{ab}; C).$$

Proof. Let $[\omega]$ be an element of $H^1(X_n; C)_k$ such that $\overline{\omega}^*\omega = df$ for some function f on X^{ab} . We have $\gamma^*f = \exp 2\pi \sqrt{-1} (k/n) f + c$ for some constant c. If $k \neq 0$, we put $g = f + c(\exp 2\pi \sqrt{-1} (k/n) - 1)^{-1}$ which satisfies $dg = \overline{\omega}^*\omega$.

We put $\tilde{C}=\pi^{-1}(C)$. Let $\Omega'(*\tilde{C})$ be the algebra of rational 1-forms on the surface $x_3^n=f(x_1,x_2)$ which have poles at most along \tilde{C} . Let $\Omega'(*\tilde{C})[k/n]$ be the vector space of the rational forms $\varphi \in \Omega'(*\tilde{C})$ such that $\Upsilon^*\varphi = \exp 2\pi \sqrt{-1} (k/n)\varphi$. By means of the comparison theorem of Grothendieck-Deligne [2], we have the following isomorphism (2.4) $H^j(\Omega'(*\tilde{C})[k/n] \cong H^j(X_n; C)_k$.

On the other hand, we have the following commutative diagram.

(2.5)
$$\Omega^{j}(*\tilde{C})[\alpha] \xrightarrow{d} \Omega^{j+1}(*\tilde{C})[\alpha]$$

$$\uparrow^{\varphi} \qquad \uparrow^{\varphi} Q_{2m}^{j+1}(*C)$$

$$\Omega^{j}_{2m}(*C) \xrightarrow{V^{\alpha}} \Omega_{2m}^{j+1}(*C)$$

where the homomorphism φ is defined by $\varphi(\omega) = f^{\alpha}\omega$ for $\omega \in \Omega^{j}_{c2}(*C)$. This homomorphism induces the following isomorphism

$$H^{j}(\Omega_{C^{2}}^{\bullet}(*C), \mathcal{V}_{\alpha}) \cong H^{j}(X_{n}; C)_{\alpha}.$$

Combining (2.1)-(2.5), we get the following commutative diagram.

Proposition 2.7. The homomorphism

$$\overline{\omega}^* \circ j^* \circ i^* : H^1(V; \mathbf{C}) \longrightarrow H^1(X^{ab}; \mathbf{C})$$

is an isomorphism.

Proof. From (2.1)-(2.3), the homomorphism $\bar{\omega}^* \circ j^* \circ i^*$ is injective. Let q be the irregularity of V. It suffices to prove that $\dim H^1(X^{ab}; C) = 2q$.

Since \overline{C} intersects H_{∞} transversally, we have the following exact sequence of the central extension ([6], Lemma 1).

$$0 \longrightarrow Z \longrightarrow \pi_1(C^2 - C, *) \longrightarrow \pi_1(P^2 - \overline{C}, *) \longrightarrow 1.$$

Hence, the following isomorphism follows

$$[\pi_1(C^2-C,*), \pi_1(C^2-C,*)] \cong [\pi_1(P^2-\overline{C},*), \pi_1(P^2-\overline{C},*)].$$

By using Proposition 2.1, we have dim $H^1(X^{ab}; C) = 2q$.

Thus, we have the following isomorphisms.

$$H^1(X^{ab}\,;\,C)\cong \bigoplus_{0< k\leq n-1} H^1(\overline{X}_n\,;\,C)_k\cong \bigoplus_{0< k\leq n-1} H^1(\Omega^{\boldsymbol{\cdot}}_{C^2}(*C),\overline{V}_{k/n}).$$

This completes the proof of Theorem 1.3.

3. Discussion and examples. Let ρ_{α} be the representation of $\pi_1(C^2-C,*)$ defined by

Then by
$$ho_a\colon \pi_1(C^2-C,*){\longrightarrow} H_1(C^2-C\,;\,Z){\longrightarrow} C^* \ \|\|\ Z\ni 1{\longmapsto} \exp 2\pi \sqrt{-1}\,\alpha.$$

We denote by $\mathscr{V}(\alpha)$ the flat vector bundle associated with the representation ρ_{α} . We have an isomorphism

$$H^{j}(\Omega_{C^{2}}^{\bullet}(*C), \mathcal{V}_{\alpha}) \cong H^{j}(X; \mathscr{V}(\alpha)).$$

Hence, our theorem can also be formulated by using $\mathscr{V}(\alpha)$.

In [4] we prove that $h_{\alpha}=0$ if $\exp 2\pi \sqrt{-1} \alpha$ is not one of the eigenvalues of the Milnor monodromies at the singular points of C. In particular, if we assume that C posseses only cusps and nodes as singularities, $\bigoplus_{0<\alpha<1} H^1(\Omega_{C^2}(*C), \mathcal{V}_{\alpha})$ is ismorphic to

$$H^{1}(\Omega_{C^{2}}^{\bullet}(*C), V_{1/6}) \oplus H^{1}(\Omega_{C^{2}}^{\bullet}(*C), V_{-1/6}).$$

The Alexander polynomial of C is $(t^2-t+1)^q$, where q is the irregu-

larity in the sense of the previous section. We have

$$q \leq$$
 the number of cusps.

For the proof of these statements see [4].

In [10], Zariski studies the irregularity by means of linear systems. In our point of view $q = \dim H^1(\Omega_{C^2}^*(*C), V_{1/6})$.

Let $\chi(X)$ be the Euler characteristic of X. We have

$$\dim H^1(\Omega_{C^2}^{\cdot}(*C), \mathcal{V}_a) - \dim H^2(\Omega_{C^2}^{\cdot}(*C), \mathcal{V}_a) = \chi(X) \qquad \text{for any } \alpha.$$

In particular, if we assume that C has only cusps and nodes as singularities, we have

$$\dim H^2(\Omega_{C^2}^{\cdot}(*C), \mathcal{V}_{\alpha}) = \begin{cases} \chi(X) & \text{if } \alpha \equiv \pm 1/6 \text{ mod. } Z \\ \chi(X) + q & \text{otherwise.} \end{cases}$$

Example 3.1. Let X be the complement of the curve defined by $x^2-y^3=0$ in C^2 . We have dim $H^1(X^{ab};C)=2$ and $H^1(X^{ab};C)$ is isomorphic to

$$H^{1}(\Omega_{C^{2}}^{\bullet}(*C), V_{1/6}) \oplus H^{1}(\Omega_{C^{2}}^{\bullet}(*C), V_{-1/6})$$

and is represented by the differential forms $\omega_1 = (x^2 - y^3)^{-1}(-(y/3)dx + (x/2)dy)$, $\omega_2 = y\omega_1$.

Example 3.2. Let C be the curve defined by

$$f = (x^2 + y^2)^3 + (y^3 + 1)^2 = 0$$
 (see [9]).

Then, $H^1(\Omega_{C^2}^{\cdot}(*C), \mathcal{V}_{1/6})$ and $H^1(\Omega_{C^2}^{\cdot}(*C), \mathcal{V}_{-1/6})$ have dimension 1 and are generated respectively by $\omega_1 = f^{-1}(x(y^3+1)dx + (y(y^3+1)-y^2(x^2+y^2))dy)$ and $\omega_2 = (y^3+1)\omega_1$. The Alexander polynomial is t^2-t+1 .

References

- [1] Deligne, P.: Equations différentielles à points singuliers réguliers III. Lect. Note in Math., vol. 163, Springer (1970).
- [2] Grothendieck, A.: On the de Rham cohomology of algebraic varieties. Publ. Math. I.H.E.S., 29, 95-103 (1966).
- [3] Kohno, T.: Differential forms and the fundamental group of the complement of hypersurfaces (to appear in Proc. of pure Math., A.M.S.).
- [4] —: Etude algébrique du groupe fondamental du complément des hypersurfaces et problèmes de $K(\pi, 1)$. Thèse de 3ème Cycle, Université Paris VII (1982).
- [5] Libgober, A.: Alexander polynomials of plane algebraic curves (1981) (preprint).
- [6] Oka, M.: On the fundamental group of the complement of a reducible curve in P². J. London Math. Soc., 12, 239-252 (1976).
- [7] Randell, R.: Some topology of Zariski surfaces. Lect. Note in Math., vol. 788, Springer, pp. 145-165 (1979).
- [8] Sullivan, D.: Infinitesimal computations in topology. Publ. Math. I.H.E.S., 47, 269-331 (1977).
- [9] Zariski, O.: On the existence of algebraic functions of two variables possessing a given branched curve. Amer. J. Math., 51, 305-328 (1929).
- [10] —: On the irregularity of cyclic multiple planes. Ann. of Math., 32, 131-141 (1931).