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1. Introduction and the statement of the result, Let C be the
algebraic curve in C defined by a reduced polynomial f. We denote
by 9(,C)the algebra of the rational differential orms on C which
are holomorphic on the complement X=C-C. Let V" 95(,C)
95+(,C) be the regular connection in the sense of Deligne ([1])
defined by V=d+d logf/ with a real number . We denote by
H(9(,C), V) the ]-th eohomology group of the de Rham complex

;95.(,) ;95+(,C) -....
In [5] A. Libgober defined the Alexander polynomial of a plane

algebraic curve. Let us review the definition.
Definition 1,1, Let C be an irreducible algebraic curve in P.

We take a complex line H such that H intersects C transversally.
Let C denote C (P-H) and let X be the complement of C in P-H.

Let p" X-X be an infinite cyclic covering of X. Then the ring
of the Laurent polynomials C[t-, t]-A operates on H(X; C) by
means of the deck transformations. The A-module H(X; C) has a
presentation of the form

A/,(R) (R)A/
with some polynomials f(t), ..., f(t). We call the product ]-I__f(t)
the Alexander polynomial of C (or C).

Remarks 1.2. i) In the proof of Theorem, (1.3), we show that
HI(Xadime ;C) is fin,ite.

ii) The Alexander polynomial of the curve C is determined up to
unit and does not depend on the choice of a line H.

We have the following
Theorem 1.3. Let C C be an irreducible algebraic curve which

intersects transversally with the line at infinity. Let ha denote
dimcH(9"c(.C, ) for a real number . Let At(t) be the Alexander
polynomial of C. Then we have

de(t)= (t-exp 2#-Z-).
0<a<l

Moreover the numbers wish ha =#-0 are rational numbers with n e Z,
where we denote by n the degree of our curve C.

2. Proof of the theorem. Let be the algebraic closure of C
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in P and let X be the n-fold cyclic covering of X--C-C defined by
X={(x, x,., x) e C x f(x, xO, x 4=0}. LetX be the algebraic closure
ofX in P. Thus, we obtain the branched covering"XP branched
along C. Let /" V--.X be a resolution of singularity. We put D
=/-(-()). Let i" .-u-(C)-,V be the injection defined by
i--(/l_.)-. We have the following proposition due to R. Randell.

Proposition 2.1 (Randell [7]). The injection i" Xn---I()__V
induces an isomorphism i*" HI(V; Q)H(Xn-u-(C); Q).

Let T be a generator of the group of the deck transformations of
the cyclic covering p "X--.X. We denote by H(X C) the subspace
of H(X ;C) defined by

HI(X C)= {o e HI(Xn C) T*=exp 2z/-=-(/c/n)}.
Lemma 2.2. Let ]" Xn >X-=-(C) be the inclusion. Then,

the induced homomorphism ]*" H(Xn-=-I(C); C) is in]ective and
image ]*=(0<-H(X C).

Proof. Let H be the line at infinity. From the cohomology
exact sequence of the pair (Z-=-(C), X) and the Thorn isomorphism.
H(X-z-(),X)H-(z-(H-)), we have the. injectivity of ]*.
We obtain the exact sequence

]*
0 ;H(X--(C)) ;H(X) ;H"(2--=-(), X) ;0.

C
On the other hand H(X C)0=C, which is represented by d log f.
This completes the proof of the second assertion.

Let " X-X be the covering map such that p &=p.

Lemma 2.3. The covering map induces an injection

* ( H(X C) >H’(X; C).
lkn-1

Proof. Let [w] be an element of H(Xn ;C) such that *o--df
for some function f on Xa. We have T*f=exp 2=4-- (kin)f+ c for
some constant c. If k=/= 0, we put g=f+ c(exp 2=4:- (k/n) 1)-which satisfies dg--*o.

We put ==-(C). Let f2"(.C) be the algebra of rational 1-forms
on the surface x =f(xl, x) which have poles at most along C. Let
9"(*C)[k/n] be the vector space of the rational forms e 9"(.C)such
that T*o=exp2z/-l(lc/n)9. By means of the comparison theorem
of Grothendieck-Deligne [2], we have the following isomorphism
(2.4) H(9"(*C)[k/n]H(X C).
On the other hand, we have the following commutative diagram.

(2.5)
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where the homomorphism is defined by ()=f for e f2c,(.C).
This homomorphism induces the following isomorphism

H(9"c(,C), ’)H(X C).
Combining (2.1)-(2.5), we get the following commutative diagram.

0

(2.6) H(X--(C) C) . H(V C)

H’(X0 >H(X. ;C) >H(Xn ;C) , ;C)

0 >/-/’(X; c) H()’,(,C), ’)
0/n-1

Proposition 2.7. The homomorphism

* ]* i* H(V C) >-H(X C)
is an isomorphism.

Proof. From (2.1)-(2.3), the homomorphism *o]*oi* is in-
jective. Let q be the irregularity of V. It suffices to prove that
dim. H(X C)--2q.

Since intersects H transversally, we have the following exact
sequence of the central extension ([6], Lemma 1).

0 >Z---->rq(C--C, ,) >rc(P-C, ,)- >1.
Hence, the following isomorphism follows

By using Proposition 2.1, we have dim. H(X C)=2q.
Thus, we have the following isomorphisms.
H(X V)- (R) H(X C) (R) H(9"(,C), ).

0<k<n-1 O<kn-1

This completes the proof of Theorem, 1.3.
3. Discussion and examples. Let p. be the representation of

(C-C, ,) defined by
p,," (C-C, ,)---H(C-C Z)

Z 1 ;exp2-a.

We denote by (a) the fiat vector bundle associated with the represen-
tation p. We have an isomorphism

H(’c(.C), )-H(X ()).
Hence, our theorom can also be formulated by using ().

In [4] we prove that h.=0 if exp 2J-- is not one of the eigen-

values of the Milnor monodromies at the singular points of C. In
particular, if we assume that C posseses only cusps and nodes as
singularities, @0<.< H(O’c..(*C), ) is ismorphic to

H’(2"c,(,C), V,/)H’(’c,(.C), V_,/).
The Alexander polynomial of C is (t-+l), where q is the irregu-
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larity in the sense of the previous section. We have
q<the number of cusps.

For the proof of these statements see [4].
In [10], Zariski studies the irregularity by means of linear sys-

tems. In our point of view q-dim. H(9"c(,C),
Let Z(X) be the Euler characteristic of X. We have
dim H(9"c(.C) g’) dim H2(9"c(.C)

In particular, if we assume that C has only cusps and nodes as singu-
larities, we have

Z(X) if a-- + 1/6 mod. Zdim. H2(9"c2(.C), V,)
tZ(X) + q otherwise.

Example :}.1o Let X be the complement of the curve defined by
x-y=O in C. We have dimH’(Xa’;C)--2 and H(X";C) is iso-
morphic to

H’(’,(.C), ,/)(R)H’(9.(,C),
and is represented by the differential forms o,=(x"-y)-(-(y/3)dx
+ (x/2)dy), w2 yo,.

Example :.2. Let C be the curve defined by

f= (x +y)+ (y+ 1) 0 (see [9]).
Then, H(t"2"c,(.C), V/) and H(9"c,(.C), V_/,) have dimension 1 and are
generated respectively by o1 f-’(x(y + 1)dx+ (y(y8+ 1)- y(x + y2))dy)
and (y+ 1),. The Alexander polynomial is t- t+ 1.
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