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1. Introduction and the statement of the result. Let C be the
algebraic curve in C? defined by a reduced polynomial f. We denote
by Q2¢(xC) the algebra of the rational differential forms on C? which
are holomorphic on the complement X=C*—C. Let F,: 2%.(xC)
—2%(xC) be the regular connection in the sense of Deligne ([1])
defined by V ,po=do+ad log f A¢ with a real number «. We denote by
H!(Q24(xC), V,) the j-th cohomology group of the de Rham complex

e Qi (O LS QU C)—> - - -,

In [5] A. Libgober defined the Alexander polynomial of a plane
algebraic curve. Let us review the definition.

Definition 1.1. Let C be an irreducible algebraic curve in PZ.
We take a complex line H. such that H. intersects C transversally.
Let C denote CN (P*— H.)) and let X be the complement of C in P*—H._..

Let p: X*>—X Dbe an infinite cyclic covering of X. Then the ring
of the Laurent polynomials C[t"!, {]=/4 operates on H'(X**;C) by
means of the deck transformations. The 4A-module H'(X?*; C) has a
presentation of the form

A/(fl(t))@ v '®A/<fk(t))

with some polynomials f,(t), - - -, f,(t). We call the product []%_, f,(¢)
the Alexander polynomial of C (or C).

Remarks 1.2. i) In the proof of Theorem (1.3), we show that
dim, H'(X?®; C) is finite.

ii) The Alexander polynomial of the curve C is determined up to
unit and does not depend on the choice of a line H.,.

We have the following

Theorem 1.3. Let CN\C?be an irreducible algebraic curve which
intersects transversally with the line at infinity. Let h, denote
dim, H'(Q.(xC, V,) for a real number . Let At) be the Alexander
polynomial of C. Then we have

do(t)= 0<]"[<1 (t—exp 2rv/ — 1 a)"=.

Moreover the numbers a with h,>0 are rational numbers with ne € Z,
where we denote by n the degree of our curve C.
2. Proof of the theorem. Let C be the algebraic closure of C
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in P? and let X, be the n-fold cyclic covering of X=C?—C defined by
X, ={(®,, @, x;) € C*; 22=[ (2, &), %, 0}. Let X, be the algebraic closure
of X, in P®. Thus, we obtain the branched covering = : X,— P? branched
along C. Let x:V—X, be a resolution of singularity. We put D
=p'(z'(C)). Let i:X,—n'(C)»V be the injection defined by
i=(u|y_p)~'. We have the following proposition due to R. Randell.

Proposition 2.1 (Randell [7]). The injection i: X, —z'(C)—>V
induces an isomorphism i*: H'(V; Q =H'(X,—="'(C); Q).

Let 7 be a generator of the group of the deck transformations of
the cyclic covering p, : X,—»X. We denote by H'(X, ; C), the subspace
of H'(X,; C) defined by

H(X;O)={we H(X,; C); r*o=exp 2zv/ — 1(k/n)}.

Lemma 2.2. Let j: X,=—>X,—n"'(C) be the inclusion. Then,
the induced homomorphism j*: H(X,— =z *(C);C) is injective and
image j* = @oct<n-1 H'(X, 5 C)ye

Proof. Let H. be the line at infinity. From the cohomology
exact sequence of the pair (X,—="'(C), X,) and the Thom isomorphism
H¥X,—z%(0), X,)=H**(z~'(H..— C)), we have the injectivity of j*.
We obtain the exact sequence

0—>H'(X, — 1~ (0))—> H'(X,,) —>H(X,, — -(C), X,)—>0.
n
C

On the other hand H'(X,; C),=C, which is represented by d log f.
This completes the proof of the second assertion.
Let @: X**—X, be the covering map such that p,-a=p.
Lemma 2.3. The covering map @ induces an injection
a*: @ H'X,;C),—>H(X*;C).

1<k<n—1

Proof. Let [w] be an element of H'(X,; C), such that a*o=df
for some function f on X**. We have r*f=exp 2rv/ —1(k/n)f+c for
some constant ¢. If k0, we put g=f+ c(exp 2rv/ —1(k/n) — 1)
which satisfies dg=a*w.

We put C’=7z“(C). Let Q'(*C') be the algebra of rational 1-forms
on the surface «}= f(z, ®,) which have poles at most along C. Let
2'(*C)[k/n] be the vector space of the rational forms ¢ e 2°(xC) such
that 7*o=exp 2zv/—1(k/n)p. By means of the comparison theorem
of Grothendieck-Deligne [2], we have the following isomorphism

2.9 HIQ O)lk/nl=H!(X, ; C),.
On the other hand, we have the following commutative diagram.
@.5) 2OVl -2 2 ()]

¢ [
024,:C) L5051(0)
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where the homomorphism ¢ is defined by ¢(w)=f*w for we 2%(xC).
This homomorphism induces the following isomorphism
H'(Q6(0),V)=H'(X,; C),.
Combining (2.1)—(2.5), we get the following commutative diagram.
0

2.6) H(X,—(0); O« —H'(V;C)
]’*
0—>H'(X, ; O)"—>H'X,; C) —pH'X*; C)
w
Tlll IR
0—>H'(X;C) —> @ H'(RQuGE0),V.,,)
0<k<n-1

Proposition 2.7. The homomorphism
@*oj*oi*: H(V ; C)—>H'(X**; C)
8 an isomorphism.

Proof. From (2.1)-(2.3), the homomorphism @*oj*o.¢* is in-
jective. Let ¢ be the irregularity of V. It suffices to prove that
dim H'(X*; C)=2q.

Since C intersects H. transversally, we have the following exact
sequence of the central extension ([6], Lemma 1).

0—>Z——r,(C*—C, ¥)—>r (P*—C, x)—>1.
Hence, the following isomorphism follows
[7,(C*—C, %), 7,(C*—C, »]=[n,(P*—C, %), n,(P*—C, )]
By using Proposition 2.1, we have dim H'(X*; C)=2q.

Thus, we have the following isomorphisms.

HX*;O)= @ HEX,;Chz @ HRu(0),Vyw.

0<k<n—1 0<k<n-1
This completes the proof of Theorem 1.3.
3. Discussion and examples. Let p, be the representation of
7,(C*—C, %) defined by
0. m(C*—C, x)—>H,(C*—C; Z)—>C*

n o
Z 35 1l——>exp 2zy/ —1a.

We denote by 7 (a) the flat vector bundle associated with the represen-
tation p,. We have an isomorphism

H'(Qu(0),V)=H' (X ; V().
Hence, our theorom can also be formulated by using 7" ().

In [4] we prove that k,=0 if exp 2r4/— 1« is not one of the eigen-
values of the Milnor monodromies at the singular points of C. In
particular, if we assume that C posseses only cusps and nodes as
singularities, @oc.c1 H'(Qp(xC), V,) is ismorphic to

HI(QLV(*C)’ Vl/e)@Hl(Qba(*C), V—l/e)‘
The Alexander polynomial of C is (t*—t-+1)?, where ¢ is the irregu-
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larity in the sense of the previous section. We have
g<the number of cusps.

For the proof of these statements see [4].

In [10], Zariski studies the irregularity by means of linear sys-
tems. In our point of view g=dim H'(2(*C), V).

Let 2(X) be the Euler characteristic of X. We have

dim H (2(x0), V,) —dim H*(Q4(xC), V) =%(X) for any a.

In particular, if we assume that C has only cusps and nodes as singu-
larities, we have

. a0y XX if e=+1/6 mod. Z
dim B (Q6(:C), 7.) = {X(X) +q  otherwise.

Example 3.1. Let X be the complement of the curve defined by
2’—y*=0 in C®. We have dim H(X**; C)=2 and H'(X**; C) is iso-
morphic to

H'(Q6:(xC), V) DH (26:(xC), V _0)
and is represented by the differential forms o,=(®*—»*-'(—(y/3)dx
+(@/2)dy), w,=yw,.

Example 3.2. Let C be the curve defined by

J=@+9¥)’+ @ +1)'=0  (see [9D.
Then, H'(24(xC), V) and H'(Q24(xC), V _,,) have dimension 1 and are
generated respectively by o,=f~'(x(¥*+1)dz+ Y@+ 1) —y'@*+y»))dy)
and w,=(¥*+1)w,. The Alexander polynomial is t*—¢+1.
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