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1. Introduction. In this no.te we calculate r and c satisfying
(1.1) "aep be ce

Here a, b, p, q are given formal symbols (see [1]-[4] for the notation).
When a--b-1, p and q are symbols, such r and c are computed in [2]
(cf. [3], [4]). In our present formula, we can take a, b, p, and q to. be
formal symbols, that is, infinite sums of symbols which satisfy some
conditions.

2. Double formal symbols. Let X be an open set in C
{x=(x, ..., x) x e C, l_]gn}, * a point in the cotangent bundle

T*X_X C {(x, ) e X C} of X.
Definition 1. Let 2 be a conic neighborhood o.f k* in T*X. Let

(2.1) P(tl, t2 x, ): ] tJP[x, )
j)k=O

be a formal power series in (t, t) with coefficients P(x,
(], k=O, 1, 2, ...) holomorphic in/2. The formal series P(t, t x, ) is
said to. be a double formal symbol defined in/2 if for any 9’9 there
exist constants d, A which satisfy the following conditions"

(a) 0<d,
(b) For each h0 there is a constant C>0 such. that

(2.2) ]P(x, )I_CA+ exp (h]l)
for all ], k=O, 1, 2, (x, ) e 9’ satisfying Il_(]+ k+ 1)d.

The space o.f all double formal symbols defined in 9 is denoted
by S.(f2), which is a commutative ring under the addition and the
product to be those of formal po.wer series. Set
then S(f2) is the ring o.f all formal symbols defined in 9 ([2], Def. 1;
here we consider t= t).

Definition 2. A double formal symbol
P(t. t x, )=],=0 ttP(x,

defined in/2 is said to, be equivalent to, zero and is written P(t,, t x,
0 if for any 9’= 9 there exist constants d, A which satisfy the o,1-

lowing co,nditio,ns
(a) 0<d, 0<A<I.
(b) For each h0 there is a constant C0 such that
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j+kKm-1

for any m--1, 2, (x, ) e tO’ satisfying Il_md.
The set of all double formal symbols defined in/2 which are equiva-

lent to, zero is denoted by/(tO). We set/(9)=/(9)=/(9)1__0. We
put furthermore S(9)= (12)1=o and R(t)=/(tO)S(9). Here we
always consider t---t,. Then there are the following injections"

R(9)--+/(9)=-+/(9)

S()--g() ,g ).
It is easy to, see that/(9) (resp./(/2), R(9)) is an ideal o.f :(9) (resp.
:(9), S(9)) an,d that (9)/.(D)=/(9). Hence there is an injective
homo.mo,rphism

,,." (D)l(9)
induced rom the preceding inclusions. On the other hand we ca
define a homo.morphism,.,. (9)!,.(9) ;(9)/()
by setting .,(P(t,, t. , ))= P(t, t , ). Then we have p, ,--id,, p.:id. By the theory of symbols o.f holomo.rphic microlocal opera-
tors (cf. [4]), lim :(9)//(t9) (9 2*; conic neighborhood) is additively

isomorphic to. the stalk 6’. o.f ’ at 2". Therefore we have
Proposition :}. There is an additive isomorphism

lira :(9) //.(9)
such that the image of x$ is equal to xD (]= 1, ..., n).

Definition 4. The image of a double formal symbol P(t, t x, )--,. t[tP,(x, ) under the preceding isomorphism is denoted by
P(t, t x, ) "= ", ttP(x, )" and is said to. be the normal product

of P(t, t x, ). We often abbreviate t[tP(x, ) to "] P(x, ) ".

Let P(t x, ), Q(t; x, ) be fo.rmal symbols ( e (tg)). Then the
composite operator "P(t;x, )" "Q(t;x, )" is expressed in terms of
double symbols as follows.

Proposition ;. Set
(2.4) W(t. t x, )= exp (t3.3)P(t x, )Q(t y, ) I=’,
Then W(t. t. x, ) is a double formal symbol satisfying
(2.5) W(t,, t x, )" P(t x, ) Q(t x, ) ".

:. Statement of the results. A fo.rmal symbol P(t; x,)
,=o tP(x, ) defined in/2 is said to. be of order at most m (m is a

real number) if for any 9’9 there are co.nstants d, A satisfying the
folio.wing conditions"

(a) 0<d, 0<A<I.
(b) There is a constant C>0 such that

IP(x, )[_CA Il
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for any ]--0, 1, 2, (x, ) e ’, ]1_(]+ 1)d.
A formal symbol p(t x, ) is said to be o order at most 1-0 if it

satisfies the co.ndition o.f t)ro.position 2 in [2].
Now let p(t;x, ), q(t;x, ) be formal symbols of order at most

1-0 defined in . Let a(t; x, ) and b(t; x, ) be ormal symbols of
order at m.ost m and m respectively defined in 9. We introduce two
sequences {w}, {q} o. formal symbols defined in X as ollows

’Wo(t x, y, , )= p(t x, )+ q(t y, ),
o(t; x, y, , )=a(t; x, ). b(t y, ),

(a.aw+aw,.aw_),(3.1)

Here ]=0, 1, 2, Let us consider formal series

r(t x, )= tw(t x, x, , ),
j=O

c(t x, )= t(t x, x, , ).
j=O

Then we have
Theorem 6. The formal series r(t x, ) and c(t x, ) are formal

symbols of order at most 1-0 and ml+m2 respectively defined in [2

satisfying

(3.2) a(t x, ). exp {p(t x, )}" b(t x, ) exp {q(t x, )}"
"c(t; x, ). exp (r(t; x, )}’.

Remarks. (a) Of course such an expression as the right-hand
side in (3.2) is not unique. We can, for example, replace c by ce" or
any r’ to be of order at most 0 and r by r-r’.

(b) The preceding theorem, is valid even for non-local operators
so long as the right member makes sense. For instance, a kind of
composition formula for Fourier integral operators (cf. [5]), or rather
for "Laplace integral operators" (cf. [6]) is obtained.

When a= b= 1, we have the following as a corollary of Theorem. 6.
Theorem 7. The formal series r(t x, ) is a formal symbol of

order at most 1-0 defined in [2 such that

(3.3) "exp {p(t x, )}" "exp {q(t x, )}" exp {r(t x, )}’.
4. Outline of the proof of Theorem 6. The composite operator

ae" beq" is expressed by Proposition 5. That is, i we set
H=exp (t.3.3)a(t; x, )b(t y, V) exp (p(t; x, )+q(t y, ])}

then we have "ae" beq’= "111=,=’. The double formal symbol//
(defined in/2 tO) is the unique solution o
(4.1)

[lIl=o=a(t; x, )b(t y, ) exp {p(t; x, )+ q(t; y, ])}.
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We assume//to be of the form

//= texp tw
If {@} and {w,} satisfy (3.1), then//is a solution to (4.1). Moreover
one can see that t, and , tw, themselves are double formal sym-
bols of order at most m,+m, and 1-0 respectively defined in
Since

c(t; x, )- t( x, x, , ),
r(t x, )N , tw( x, x, , ),

we obtain the theorem.
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