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1. Introduction. In this note we calculate » and ¢ satisfying

1.1 tae?: (be:=:ce":.
Here a, b, p, q are given formal symbols (see [1]-[4] for the notation).
When a=b=1, p and q are symbols, such r and ¢ are computed in [2]
(ct. [3], [4D. In our present formula, we can take a, b, p, and ¢ to be
formal symbols, that is, infinite sums of symbols which satisfy some
conditions.

2. Double formal symbols. Let X be an open set in C~
={x=(, ---, ,); ;€ C,1<j<n}, * a point in the cotangent bundle
T*X=XXC"={(, § e XXC"} of X.

Definition 1. Let 2 be a conic neighborhood of &* in 7*X. Let

@.1) P(t, t; 2, 8)= > HEP (=, &)
ok=0

be a formal power series in (¢, t) with coefficients P,,(x, &)
{, k=0,1,2, - - .) holomorphic in 2. The formal series P(¢, t,; , &) is
said to be a double formal symbol defined in 2 if for any 2’< Q2 there
exist constants d, A which satisfy the following conditions:

(a) 0<d, 0<A<].

(b) For each >0 there is a constant C>0 such that
2.2 |P iz, )| <CA’* exp (h|E])
for all 7, k=0,1,2, ---; (x, §) € 2’ satisfying |&|>(G+k+1d.

The space of all double formal symbols defined in 2 is denoted
by §2(.Q), which is a commutative ring under the addition and the
product to be those of formal power series. Set S = §1(Q)= §2(.Q)|m=o,
then S(9) is the ring of all formal symbols defined in 2 ([2], Def. 1;
here we consider t=t,).

Definition 2. A double formal symbol

P(tu tz; X, $)=Z;°,k=0 t{t;chk(x’ 5)
defined in 2 is said to be equivalent to zero and is written P(¢,, t,; x, &)
~0 if for any 2’ R there exist constants d, A which satisfy the fol-
lowing conditions :

(a) 0<d,0<A<1.

(b) For each >0 there is a constant C>0 such that
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@.3) S P, e)\gCAm exp (1]£)

Jj+k<m-1

for any m=1,2, ... ; (x, &) € £ satisfying |£|>md.

The set of all double formal symbols defined in 2 which are equiva-
lent to zero is denoted by R,(2). We set R(Q)=R,(Q)=R,()|,,. We
put furthermore S(2) = S$(2)|,., and R(2) =R NS(). Here we
always consider {=t,. Then there are the following injections:

R(@Q)=>R(Q)=>E,(2)

f

S(2)=—>3(2) =>3,(2).

It is easy to see that R,(2) (resp. R(Q), R(Q)) is an ideal of §2(9) (resp.
$(©), S(2)) and that S@)NR,(D)=FR(2). Hence there is an injective
homomorphism . .

tw S/ RBQ—>S,(D) | B,(Q)
induced from the preceding inclusions. On the other hand we can
define a homomorphism . )

¢ Su(2) | Bo(D)—>S(D) | R(D)
by setting o,(P({, t,; %, §)=P(, t; 2, &. Then we have p, 0 ¢,=1d,
0 py=1d. By the theory of symbols of holomorphic microlocal opera-
tors (cf. [4]), l}r_n) S /R(.Q) (2 > &*; conic neighborhood) is additively
isomorphic to the stalk &% of &% at &*. Therefore we have

Proposition 3. There is an additive isomorphism

lim $,(2)/ B —€%,
such that the image of x,&,is equal to x,D, (j=1, - - -, n).

Definition 4. The image of a double formal symbol P(t, t,; «, &)
=2, HtiP (2, €) under the preceding isomorphism is denoted by
Pty tys 2, &) 1= 12, ttEP,(, & : and is said to be the normal product
of P(t, t,; z, §). We often abbreviate : > t/t¥P,(x, &) : to : 3 P, (x, &) :.

Let P(t; x, &), Q(t; «, & be formal symbols (e S(2)). Then the
composite operator :P(t; x, &): :Q(t; «, &) : is expressed in terms of
double symbols as follows.

Proposition 5. Set

2.9 W(t, t,; x, &) =exp (tzae ay)P(t1 ; 2, QU Y, 77) y=a€c’
vz

Then W(t, t,; z, &) is a double formal symbol satisfying

(2.5) Wy, b 2,8 :=:P(t;2,8)::Q¢; 2,8 :.

3. Statement of the results. A formal symbol P(¢; z, &)
=2 7.0 t'P,(x, &) defined in 2 is said to be of order at most m (m is a
real number) if for any 2'c 2 there are constants d, 4 satisfying the
following conditions:
(@) 0<d,0<A<].
(b) There is a constant C>0 such that
|Py(z, |<CA|E™
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for any j=0,1,2, ---; (2,8 € 2, |§|>(+Dd.

A formal symbol p(t; «, &) is said to be of order at most 1—0 if it
satisfies the condition of Proposition 2 in [2].

Now let p(t; 2, &), q(t; «, &) be formal symbols of order at most
1—0 defined in 2. Let a(t;z, & and b(t; x, & be formal symbols of
order at most m, and m, respectively defined in 2. We introduce two
sequences {w;}, {y;} of formal symbols defined in 2 X 2 as follows:

wyt; 2, Y, & P=p; 2, 8 +q; vy, 7,
Yot 2, 9, & p=alt; z, 8 -bt; v, 7,

1 J
3.1 Wii1= i+1 (aé 0,w; + ;0 aéw# ' avwl—#>’

j
1pj+1= —.I—{ae ’ay‘!’j+ Z (a€1Jf# 'aywj—u + ay‘!"y 'aéwj-#)}‘
J+1 #=0
Here 7=0,1,2, .... Let us consider formal series

rt;x, &= fjo tw,t;x, 2,88,
£

ct;x, =2, thrt; o, 2, & 8).

=0
Then we have

Theorem 6. The formal series r(t; x, &) and c(t; x, &) are formal
symbols of order at most 1—0 and m,+m, respectively defined in Q2
satisfying
(3.2 ta(t; @, &-exp {p(t; x, )} : :0(t; x, &) -exp {a(t; z, )} :

=:c(t; x &) -exp {rit;x &}:.

Remarks. (a) Of course such an expression as the right-hand
side in (3.2) is not unique. We can, for example, replace ¢ by ce” for
any 7’ to be of order at most 0 and » by r—r’.

(b) The preceding theorem is valid even for non-local operators
so long as the right member makes sense. For instance, a kind of
composition formula for Fourier integral operators (cf. [5]), or rather
for “Laplace integral operators” (cf. [6]) is obtained.

When a=b=1, we have the following as a corollary of Theorem 6.

Theorem 7. The formal series r(t; x, &) is a formal symbol of
order at most 1—0 defined in 2 such that
3.3) rexp {p(t; x, &)}: texp {q(t; 2, &} =exp {r(t; x, &} :.

4. Outline of the proof of Theorem 6. The composite operator
1ae?: :be?: is expressed by Proposition 5. That is, if we set

IIT=exp (t,0,-9,)a(t; x, b(E; ¥, ) exp {p(; x, O +q(t; v, P}
then we have :ae?: :be?:=:II|,., ,-::. The double formal symbol IT
(defined in 2 x ) is the unique solution of
@n  [oulI=000
I, ,=at; x, §)b(t; v, 1) exp {p(t; z, &) +at; y, P}
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We assume II to be of the form
=3ty exp (3t ).
7=0 k=0
If {y,} and {w,} satisfy (3.1), then I7 is a solution to (4.1). Moreover
one can see that > t{¥, and Y tiw, themselves are double formal sym-
bols of order at most m,+m, and 1—0 respectively defined in 2x 2.
Since
ot @, &~ thh(ts 2, %, & 6),

r(t; 2, O~ tHw,t; x, x, 8 8),
we obtain the theorem.
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