20. On Certain Cubic Fields. I

By Mutsuo Watabe
Department of Mathematics, Keio University
(Communicated by Shokichi Iyanaga, m. J. A., Feb. 12, 1983)

1. We shall use the following notations: For an algebraic number field F, the ring of integers, the group of units, the group of units with norm 1 and the discriminant of F by $\mathcal{O}_{F}, E_{F}, E_{F}^{+}$, and D_{F} respectively. The discriminant of an algebraic number θ will be denoted by $D(\theta)$ and the discriminant of a polynomial $f(x) \in Z[x]$ by D_{f}.

Now let K / \boldsymbol{Q} be totally real and cubic. For $\alpha \in K, \alpha^{\prime}, \alpha^{\prime \prime}$ will denote the conjugates of α. We define after [3] the function S from K^{\times}to \boldsymbol{R} by

$$
S(\alpha)=\frac{1}{2}\left\{\left(\alpha-\alpha^{\prime}\right)^{2}+\left(\alpha^{\prime}-\alpha^{\prime \prime}\right)^{2}+\left(\alpha^{\prime \prime}-\alpha\right)^{2}\right\} .
$$

Let $1, \xi, \eta$ be a Z basis of \mathcal{O}_{K}. For $\alpha=x+y \xi+z \eta \in \mathcal{O}_{K}, x, y, z \in Z, S(\alpha)$ is a positive definite quadratic form in y, z, so that $S(\alpha)$ has a minimal value on E_{K}.

Let us denote $\mathcal{A}(K)=\left\{\varepsilon \in E_{K}^{+} \mid \varepsilon \neq 1, S(\varepsilon)\right.$ is minimum $\}$ and $\mathscr{B}_{\varepsilon_{1}}(K)$ $=\left(E_{K}^{+} \backslash\left\{\varepsilon_{1}^{n} ; n \in Z\right\}\right) \cap \mathcal{A}(K)$ for $\varepsilon_{1} \in \mathcal{A}(K)$.

In [5], H. J. Godwin announced the following conjecture :
Conjecture. If $\varepsilon_{1} \in \mathcal{A}(K), \varepsilon_{2} \in \mathscr{B}_{\varepsilon_{1}}(K)$ and $S\left(\varepsilon_{1}\right)>9$, then $\varepsilon_{1}, \varepsilon_{2}$ generate $E_{K}^{+}: E_{K}^{+}=\left\langle\varepsilon_{1}, \varepsilon_{2}\right\rangle$.

The purpose of this note is to show that this conjecture holds in certain cases. We shall prove :

Theorem. Let $K=\boldsymbol{Q}(\theta), \operatorname{Irr}(\theta: \boldsymbol{Q})=f(x)=x^{3}-m x^{2}-(m+3) x-1$, $m \in Z$, with square free $m^{2}+3 m+9$. Then we have $\theta \in \mathcal{A}(K),-1-\theta$ $\in \mathscr{G}_{\theta}(K)$ and $E_{K}^{+}=\langle\theta,-1-\theta\rangle$.

Remark 1. It is easy to see that $f(x)$ is irreducible, so that K / \boldsymbol{Q} is cubic. It is cyclic and consequently totally real, because $\sqrt{D_{f}} \in \boldsymbol{Z}$. It is also easy to see that we can limit our consideration to the case $m \geqq-1$. This will be supposed throughout in the sequel.

Remark 2. This kind of fields has been considered by K. Uchida [8], E. Thomas [7] and M.-N. Gras [4].
2. The following propositions will be utilized for the proof of Theorem.

Proposition 1 (H. Brunotte and F. Halter-Koch [1]). Let ε_{1} $\in \mathcal{A}(K), \varepsilon_{2} \in \mathscr{B}_{s_{1}}(K)$, then $\left(E_{K}^{+}:\left\langle\varepsilon_{1}, \varepsilon_{2}\right\rangle\right) \leqq 4$.

Proposition 2 (E. H. Grossman [6], M. Watabe [9]). Suppose K / \boldsymbol{Q} to be totally real, $l \in Z, l \geqq 2, \delta \in E_{K}$. Then the only possible
solutions of $\gamma^{l}+1=\delta$ are given by $\gamma=a$ root of unity.
Proposition 3 (H. J. Godwin [5], H. Brunotte and F. Halter-Koch [1]). Let K be a totally real cubic field and $\mathcal{A}(K)$ and $\mathscr{B}_{\varepsilon_{1}}(K)$ for ε_{1} $\in \mathcal{A}(K)$ be as in Proposition 1. Then,

$$
S(\varepsilon)^{3}<9 S\left(\varepsilon^{3}\right), \quad S\left(\varepsilon_{1} \varepsilon_{2}\right)<3 S\left(\varepsilon_{1}\right) S\left(\varepsilon_{2}\right)
$$

for any $\varepsilon \in E_{K}^{+}, \varepsilon_{1} \in \mathcal{A}(K), \varepsilon_{2} \in \mathscr{B}_{\varepsilon_{1}}(K)$.
Proposition 4. Suppose β to be totally real and $\beta^{3}-A \beta^{2}-B \beta-1$ $=0, A, B \in Z$. Then the following holds:
(i) $S(\beta)=A^{2}+3 B$,
(ii) $(1 / 2)\left\{\left(\beta^{2}-\beta^{\prime 2}\right)^{2}+\left(\beta^{\prime 2}-\beta^{\prime \prime 2}\right)^{2}+\left(\beta^{\prime \prime 2}-\beta^{2}\right)^{2}\right\}=A^{4}+4 A^{2} B+B^{2}+6 A$,
(iii) $\quad\left(\beta-\beta^{\prime}\right)\left(\beta^{2}-\beta^{\prime 2}\right)+\left(\beta^{\prime}-\beta^{\prime \prime}\right)\left(\beta^{\prime 2}-\beta^{\prime \prime 2}\right)+\left(\beta^{\prime \prime}-\beta\right)\left(\beta^{\prime \prime 2}-\beta^{2}\right)$

$$
=2 A^{3}+7 A B+9 .
$$

3. Proof of Theorem. First we shall show $\theta \in \mathcal{A}(K)$. As $\sqrt{D_{f}}$ is square free, we have $\mathcal{O}_{K}=\boldsymbol{Z}+\boldsymbol{Z} \theta+\boldsymbol{Z} \theta^{2}$ (cf. [2]). Let $u \neq 1$ be any unit in E_{K}^{+}. Then u can be written as $u=a+b \theta+c \theta^{2}, a, b, c \in \boldsymbol{Z}$, $(b, c) \neq(0,0)$. This yields

$$
\begin{aligned}
& S(u)=\frac{1}{2}\left\{b^{2}\left(\theta-\theta^{\prime}\right)^{2}+c^{2}\left(\theta^{2}-\theta^{\prime 2}\right)^{2}+2 b c\left(\theta-\theta^{\prime}\right)\left(\theta^{2}-\theta^{\prime 2}\right)\right. \\
&+b^{2}\left(\theta^{\prime}-\theta^{\prime \prime}\right)^{2}+c^{2}\left(\theta^{\prime 2}-\theta^{\prime \prime 2}\right)^{2}+2 b c\left(\theta^{\prime}-\theta^{\prime \prime}\right)\left(\theta^{\prime 2}-\theta^{\prime \prime 2}\right) \\
&\left.+b^{2}\left(\theta^{\prime \prime}-\theta\right)^{2}+c^{2}\left(\theta^{\prime \prime 2}-\theta^{2}\right)^{2}+2 b c\left(\theta^{\prime \prime}-\theta\right)\left(\theta^{\prime \prime 2}-\theta^{2}\right)\right\} .
\end{aligned}
$$

Using Proposition 4, we have

$$
\begin{aligned}
S(u) & =\left\{b^{2}+(2 m+1) b c+\left(m^{2}+m+1\right) c^{2}\right\} S(\theta) \\
& =\left\{\left(b+\frac{2 m+1}{2} c\right)^{2}+\frac{3}{4} c^{2}\right\} S(\theta) \geqq S(\theta),
\end{aligned}
$$

as $m, b, c \in Z$ and $(b, c) \neq(0,0)$. Therefore $\theta \in \mathcal{A}(K)$.
Next, we shall show that $-1-\theta \in \mathscr{B}_{\theta}(K)$. In fact, it is obvious that $S(\theta)=S(-1-\theta)$, so that $-1-\theta \in \mathcal{A}(K)$. Suppose $-1-\theta=\theta^{n}$ for some rational integer n. It is clear that $n \neq 0, n \neq \pm 1$. If $n \geqq 2$, then $-\theta=\theta^{n}+1, \theta,-\theta \in E_{K}$, in contradiction to Proposition 2. We have also a contradiction for $n \leqq-2$ in virtue of Proposition 2. Thus we obtain $-1-\theta \in \mathscr{B}_{\theta}(K)$.

Now, for $m=-1,1$ and 2, our Theorem is seen from the table in [3], so that we have only to consider the case $m \geqq 4$. Let us denote E_{0} $=\langle\theta,-1-\theta\rangle$. Then we have $\left(E_{K}^{+}: E_{0}\right) \leqq 4$ in virtue of Proposition 1.
(a) Suppose $2 \mid\left(E_{K}^{+}: E_{0}\right)$, then there exists $\varepsilon \in E_{K}^{+}$such that ε^{2} $=\theta^{i}(-1-\theta)^{j}, \varepsilon \oplus E_{0}$, where $i, j \in\{0,1\}$.

We examine the different cases. If $(i, j)=(0,0)$, then $\varepsilon^{2}=1, \varepsilon \in E_{K}^{+}$, so that $\varepsilon=1$ as $K \subset R$. This contradicts to $\varepsilon \notin E_{0}$. If $(i, j)=(1,0)$, then $\varepsilon^{2}=\theta$. Hence we have $\varepsilon^{2}+1=\theta+1, \varepsilon, \theta+1 \in E_{K}$. This is also a contradiction by Proposition 2. If $(i, j)=(0,1)$, then $-\theta=\varepsilon^{2}+1, \varepsilon,-\theta \in E_{K}$, contradicting to Proposition 2. If $(i, j)=(1,1)$, then $\varepsilon^{2}=\theta(-1-\theta)$, so that $-1 / \theta=(\varepsilon / \theta)^{2}+1, \varepsilon / \theta,-1 / \theta \in E_{K}$. This also leads us to contradic-
tion in virtue of Proposition 2. Thus we obtain $2 \nmid\left(E_{K}^{+}: E_{0}\right)$.
(b) Suppose $3 \mid\left(E_{K}^{+}: E_{0}\right)$, then there exists $\lambda \in E_{K}^{+}$such that λ^{3} $=\theta^{k}(-1-\theta)^{l}, \lambda \notin E_{0}$, where $k, l \in\{0,1,2\}$. We can easily verify that $(k, l) \neq(0,0),(1,0),(0,1),(1,2),(2,1)$ in virtue of Proposition 2 as we have seen in (a). If $(k, l)=(1,1)$, then $\lambda^{3}=\theta(-1-\theta)$. We have $\theta \in \mathcal{A}(K)$ and $-1-\theta \in \mathcal{B}_{\theta}(K)$. So we obtain the following inequality :

$$
\begin{aligned}
S(-1-\theta)^{3}= & S(1+\theta)^{3} \leqq S(\lambda)^{3}<9 S(\theta(-1-\theta))=9 S(\theta(1+\theta)) \\
& <27 S(1+\theta)^{2},
\end{aligned}
$$

in virtue of the definition of the function S and Proposition 3. Hence we have $S(1+\theta)<27$.

Now, it is easily seen that the roots of $f(x)$ can be denoted by θ, $\theta^{\prime}, \theta^{\prime \prime}$ so that they are situated as follows:

$$
-2<\theta<-1,-1<\theta^{\prime}<0 \text { and } m+1<\theta^{\prime \prime}<m+2 \text { when } m \geqq 1
$$

Then we have $\left(\theta-\theta^{\prime}\right)^{2}>0,\left(\theta^{\prime}-\theta^{\prime \prime}\right)^{2}>(m+1)^{2},\left(\theta^{\prime \prime}-\theta\right)^{2}>(m+2)^{2}$, so that

$$
\begin{aligned}
S(1+\theta)= & \frac{1}{2}\left\{\left(\theta-\theta^{\prime}\right)^{2}+\left(\theta^{\prime}-\theta^{\prime \prime}\right)^{2}+\left(\theta^{\prime \prime}-\theta\right)^{2}\right\} \\
& >\frac{1}{2}\left(2 m^{2}+6 m+5\right)>27,
\end{aligned}
$$

in virtue of our assumption $m \geqq 4$. Thus we have $27<S(1+\theta)<27$. This is a contradiction.

If $(k, l)=(2,2)$, then $\lambda^{3}=\theta^{2}(-1-\theta)^{2}$, so that we have $(\theta(-1-\theta) / \varepsilon)^{3}$ $=\theta(-1-\theta)$. This case is reduced to the case $(k, l)=(1,1)$, so that we have also a contradiction. Thus we obtain $3 \not \backslash\left(E_{K}^{+}: E_{0}\right)$.

Therefore we conclude that $E_{K}^{+}=E_{0}=\langle\theta,-1-\theta\rangle$.
Corollary. We have $E_{K}^{+}=\left\langle\theta, \theta^{\prime}\right\rangle$, where θ^{\prime} is any conjugate of θ.
Proof. We consider the polynomial $h(x)=x^{3}-(m+3) x^{2}+m x+1$. It is clear that $h(x+1)=f(x)$. Since $h(-1 / \theta)=\left(1 / \theta^{3}\right) f(\theta)$, we have $\theta+1=-1 / \theta^{\sigma}$ for some $\sigma \in \operatorname{Gal}(K / Q)$. Hence we get $E_{K}^{+}=\left\langle\theta, \theta^{\sigma}\right\rangle$. We also obtain $E_{K}^{+}=\left\langle\theta, \theta^{\sigma^{2}}\right\rangle$ in virtue of $N_{K / Q} \theta=1$.

References

[1] H. Brunotte and F. Halter-Koch: Zur Einheitenberechnung in totalreellen kubischen Zahlkörpern nach Godwin. J. of Number Theory, 11, 552-559 (1979) .
[2] D. S. Dummit and H. Kisilevsky: Indices in cyclic cubic fields. Number Theory and Algebra. New York-San Francisco-London, pp. 29-42 (1977).
[3] M.-N. Gras: Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques de \boldsymbol{Q}. J. reine angew. Math., 227, 89-116 (1975).
[4] --: Note à propos d'une conjecture de H. J. Godwin sur les unités des corps cubiques. Ann. Inst. Fourier, Grenoble, 30, 1-6 (1980).
[5] H. J. Godwin: The determination of units in totally real cubic fields. Proc. Cambridge Philos. Soc., 56, 318-321 (1960).
[6] E. H. Grossman: On the solution of diophantine equation in units. Acta

Arith., 30, 137-143 (1976).
[7] E. Thomas: Fundamental units for orders in certain cubic number fields. J. reine angew. Math., 310, 33-55 (1979).
[8] K. Uchida: On a cubic cyclic field with discriminant 163^{2}. J. of Number Theory, 8, 346-349 (1976).
[9] M. Watabe: On certain diophantine equations in algebraic number fields. Proc. Japan Acad., 58A, 410-412 (1982).

