20. On Certain Cubic Fields. I

By Mutsuo WATABE

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., Feb. 12, 1983)

1. We shall use the following notations: For an algebraic number field F, the ring of integers, the group of units, the group of units with norm 1 and the discriminant of F by \mathcal{O}_F , E_F , E_F^{\dagger} , and D_F respectively. The discriminant of an algebraic number θ will be denoted by $D(\theta)$ and the discriminant of a polynomial $f(x) \in \mathbb{Z}[x]$ by D_f .

Now let K/Q be totally real and cubic. For $\alpha \in K$, α' , α'' will denote the conjugates of α . We define after [3] the function S from K^{\times} to R by

$$S(\alpha) = \frac{1}{2} \{ (\alpha - \alpha')^2 + (\alpha' - \alpha'')^2 + (\alpha'' - \alpha)^2 \}.$$

Let $1, \xi, \eta$ be a Z basis of \mathcal{O}_K . For $\alpha = x + y\xi + z\eta \in \mathcal{O}_K$, $x, y, z \in Z$, $S(\alpha)$ is a positive definite quadratic form in y, z, so that $S(\alpha)$ has a minimal value on E_K .

Let us denote $\mathcal{A}(K) = \{ \varepsilon \in E_K^+ | \varepsilon \neq 1, S(\varepsilon) \text{ is minimum} \}$ and $\mathcal{B}_{\varepsilon_1}(K) = (E_K^+ \setminus \{\varepsilon_1^n; n \in \mathbb{Z}\}) \cap \mathcal{A}(K) \text{ for } \varepsilon_1 \in \mathcal{A}(K).$

In [5], H. J. Godwin announced the following conjecture:

Conjecture. If $\varepsilon_1 \in \mathcal{A}(K)$, $\varepsilon_2 \in \mathcal{B}_{\epsilon_1}(K)$ and $S(\varepsilon_1) > 9$, then ε_1 , ε_2 generate $E_K^+ : E_K^+ = \langle \varepsilon_1, \varepsilon_2 \rangle$.

The purpose of this note is to show that this conjecture holds in certain cases. We shall prove:

Theorem. Let $K = \mathbf{Q}(\theta)$, $Irr(\theta : \mathbf{Q}) = f(x) = x^3 - mx^2 - (m+3)x - 1$, $m \in \mathbf{Z}$, with square free $m^2 + 3m + 9$. Then we have $\theta \in \mathcal{A}(K)$, $-1 - \theta \in \mathcal{B}_{\theta}(K)$ and $E_K^+ = \langle \theta, -1 - \theta \rangle$.

Remark 1. It is easy to see that f(x) is irreducible, so that K/Q is cubic. It is cyclic and consequently totally real, because $\sqrt{D_f} \in \mathbb{Z}$. It is also easy to see that we can limit our consideration to the case $m \ge -1$. This will be supposed throughout in the sequel.

Remark 2. This kind of fields has been considered by K. Uchida [8], E. Thomas [7] and M.-N. Gras [4].

2. The following propositions will be utilized for the proof of Theorem.

Proposition 1 (H. Brunotte and F. Halter-Koch [1]). Let $\varepsilon_i \in \mathcal{A}(K)$, $\varepsilon_2 \in \mathcal{B}_{i}(K)$, then $(E_K^+: \langle \varepsilon_1, \varepsilon_2 \rangle) \leq 4$.

Proposition 2 (E. H. Grossman [6], M. Watabe [9]). Suppose K/Q to be totally real, $l \in \mathbb{Z}$, $l \geq 2$, $\delta \in E_K$. Then the only possible

solutions of $\gamma^i + 1 = \delta$ are given by $\gamma = a$ root of unity.

Proposition 3 (H. J. Godwin [5], H. Brunotte and F. Halter-Koch [1]). Let K be a totally real cubic field and $\mathcal{A}(K)$ and $\mathcal{B}_{\iota_1}(K)$ for $\varepsilon_1 \in \mathcal{A}(K)$ be as in Proposition 1. Then,

$$S(\varepsilon)^3 < 9S(\varepsilon^3), \qquad S(\varepsilon_1\varepsilon_2) < 3S(\varepsilon_1)S(\varepsilon_2)$$

for any $\varepsilon \in E_K^+$, $\varepsilon_1 \in \mathcal{A}(K)$, $\varepsilon_2 \in \mathcal{B}_{\varepsilon_1}(K)$.

Proposition 4. Suppose β to be totally real and $\beta^3 - A\beta^2 - B\beta - 1$ =0, $A, B \in \mathbb{Z}$. Then the following holds:

- (i) $S(\beta) = A^2 + 3B$,
- (ii) $(1/2)\{(\beta^2-\beta'^2)^2+(\beta'^2-\beta''^2)^2+(\beta''^2-\beta^2)^2\}=A^4+4A^2B+B^2+6A$,
- (iii) $(\beta \beta')(\beta^2 \beta'^2) + (\beta' \beta'')(\beta'^2 \beta''^2) + (\beta'' \beta)(\beta''^2 \beta^2)$ = $2A^3 + 7AB + 9$.

3. Proof of Theorem. First we shall show $\theta \in \mathcal{A}(K)$. As $\sqrt{D_f}$ is square free, we have $\mathcal{O}_K = \mathbf{Z} + \mathbf{Z}\theta + \mathbf{Z}\theta^2$ (cf. [2]). Let $u \neq 1$ be any unit in E_K^+ . Then u can be written as $u = a + b\theta + c\theta^2$, $a, b, c \in \mathbf{Z}$, $(b, c) \neq (0, 0)$. This yields

$$\begin{split} S(u) = & \frac{1}{2} \{ b^2 (\theta - \theta')^2 + c^2 (\theta^2 - \theta'^2)^2 + 2bc(\theta - \theta')(\theta^2 - \theta'^2) \\ & + b^2 (\theta' - \theta'')^2 + c^2 (\theta'^2 - \theta''^2)^2 + 2bc(\theta' - \theta'')(\theta'^2 - \theta''^2) \\ & + b^2 (\theta'' - \theta)^2 + c^2 (\theta''^2 - \theta^2)^2 + 2bc(\theta'' - \theta)(\theta''^2 - \theta^2) \}. \end{split}$$

Using Proposition 4, we have

$$S(u) = \{b^2 + (2m+1)bc + (m^2 + m + 1)c^2\}S(\theta)$$

= $\{\left(b + \frac{2m+1}{2}c\right)^2 + \frac{3}{4}c^2\}S(\theta) \ge S(\theta),$

as $m, b, c \in \mathbb{Z}$ and $(b, c) \neq (0, 0)$. Therefore $\theta \in \mathcal{A}(K)$.

Next, we shall show that $-1-\theta \in \mathcal{B}_{\theta}(K)$. In fact, it is obvious that $S(\theta) = S(-1-\theta)$, so that $-1-\theta \in \mathcal{A}(K)$. Suppose $-1-\theta = \theta^n$ for some rational integer n. It is clear that $n \neq 0$, $n \neq \pm 1$. If $n \geq 2$, then $-\theta = \theta^n + 1$, θ , $-\theta \in E_K$, in contradiction to Proposition 2. We have also a contradiction for $n \leq -2$ in virtue of Proposition 2. Thus we obtain $-1-\theta \in \mathcal{B}_{\theta}(K)$.

Now, for m=-1,1 and 2, our Theorem is seen from the table in [3], so that we have only to consider the case $m \ge 4$. Let us denote $E_0 = \langle \theta, -1 - \theta \rangle$. Then we have $(E_K^+ : E_0) \le 4$ in virtue of Proposition 1.

(a) Suppose $2 | (E_K^+ : E_0)$, then there exists $\varepsilon \in E_K^+$ such that $\varepsilon^2 = \theta^i (-1 - \theta)^j$, $\varepsilon \in E_0$, where $i, j \in \{0, 1\}$.

We examine the different cases. If (i,j)=(0,0), then $\varepsilon^2=1$, $\varepsilon\in E_K^+$, so that $\varepsilon=1$ as $K\subset R$. This contradicts to $\varepsilon\in E_0$. If (i,j)=(1,0), then $\varepsilon^2=\theta$. Hence we have $\varepsilon^2+1=\theta+1$, ε , $\theta+1\in E_K$. This is also a contradiction by Proposition 2. If (i,j)=(0,1), then $-\theta=\varepsilon^2+1$, ε , $-\theta\in E_K$, contradicting to Proposition 2. If (i,j)=(1,1), then $\varepsilon^2=\theta(-1-\theta)$, so that $-1/\theta=(\varepsilon/\theta)^2+1$, ε/θ , $-1/\theta\in E_K$. This also leads us to contradiction

tion in virtue of Proposition 2. Thus we obtain $2\chi(E_K^+; E_0)$.

(b) Suppose $3|(E_K^+:E_0)$, then there exists $\lambda \in E_K^+$ such that $\lambda^3 = \theta^k(-1-\theta)^l$, $\lambda \in E_0$, where $k, l \in \{0, 1, 2\}$. We can easily verify that $(k, l) \neq (0, 0)$, (1, 0), (0, 1), (1, 2), (2, 1) in virtue of Proposition 2 as we have seen in (a). If (k, l) = (1, 1), then $\lambda^3 = \theta(-1-\theta)$. We have $\theta \in \mathcal{A}(K)$ and $-1-\theta \in \mathcal{B}_{\theta}(K)$. So we obtain the following inequality:

$$S(-1-\theta)^{3} = S(1+\theta)^{3} \leq S(\lambda)^{3} < 9S(\theta(-1-\theta)) = 9S(\theta(1+\theta))$$

$$< 27S(1+\theta)^{2},$$

in virtue of the definition of the function S and Proposition 3. Hence we have $S(1+\theta) < 27$.

Now, it is easily seen that the roots of f(x) can be denoted by θ , θ' , θ'' so that they are situated as follows:

$$-2 < \theta < -1, -1 < \theta' < 0 \text{ and } m+1 < \theta'' < m+2 \text{ when } m \ge 1.$$

Then we have $(\theta - \theta')^2 > 0$, $(\theta' - \theta'')^2 > (m+1)^2$, $(\theta'' - \theta)^2 > (m+2)^2$, so that

$$S(1+ heta) = rac{1}{2} \{ (heta - heta')^2 + (heta' - heta'')^2 + (heta'' - heta)^2 \} \ > rac{1}{2} (2m^2 + 6m + 5) > 27,$$

in virtue of our assumption $m \ge 4$. Thus we have $27 < S(1+\theta) < 27$. This is a contradiction.

If (k,l)=(2,2), then $\lambda^3=\theta^2(-1-\theta)^2$, so that we have $(\theta(-1-\theta)/\varepsilon)^3=\theta(-1-\theta)$. This case is reduced to the case (k,l)=(1,1), so that we have also a contradiction. Thus we obtain $3/(E_K^+:E_0)$.

Therefore we conclude that $E_K^+ = E_0 = \langle \theta, -1 - \theta \rangle$.

Corollary. We have $E_K^+ = \langle \theta, \theta' \rangle$, where θ' is any conjugate of θ .

Proof. We consider the polynomial $h(x) = x^3 - (m+3)x^2 + mx + 1$. It is clear that h(x+1) = f(x). Since $h(-1/\theta) = (1/\theta^3)f(\theta)$, we have $\theta + 1 = -1/\theta^{\sigma}$ for some $\sigma \in \text{Gal }(K/\mathbf{Q})$. Hence we get $E_K^+ = \langle \theta, \theta^{\sigma} \rangle$. We also obtain $E_K^+ = \langle \theta, \theta^{\sigma^2} \rangle$ in virtue of $N_{K/\mathbf{Q}}\theta = 1$.

References

- [1] H. Brunotte and F. Halter-Koch: Zur Einheitenberechnung in totalreellen kubischen Zahlkörpern nach Godwin. J. of Number Theory, 11, 552-559 (1979).
- [2] D. S. Dummit and H. Kisilevsky: Indices in cyclic cubic fields. Number Theory and Algebra. New York-San Francisco-London, pp. 29-42 (1977).
- [3] M.-N. Gras: Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques de Q. J. reine angew. Math., 227, 89-116 (1975).
- [4] —: Note à propos d'une conjecture de H. J. Godwin sur les unités des corps cubiques. Ann. Inst. Fourier, Grenoble, 30, 1-6 (1980).
- [5] H. J. Godwin: The determination of units in totally real cubic fields. Proc. Cambridge Philos. Soc., 56, 318-321 (1960).
- [6] E. H. Grossman: On the solution of diophantine equation in units. Acta

- Arith., 30, 137-143 (1976).
- [7] E. Thomas: Fundamental units for orders in certain cubic number fields. J. reine angew. Math., 310, 33-55 (1979).
- [8] K. Uchida: On a cubic cyclic field with discriminant 163². J. of Number Theory, 8, 346-349 (1976).
- [9] M. Watabe: On certain diophantine equations in algebraic number fields. Proc. Japan Acad., 58A, 410-412 (1982).