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1. We shall use the following notations: For an algebraic num-
ber field F, the ring of integers, the group of units, the group of units
with norm 1 and the discriminant of F by O, Ey, E#, and D, respec-
tively. The discriminant of an algebraic number § will be denoted
by D(9) and the discriminant of a polynomial f(x) e Z[x] by D,.

Now let K/Q be totally real and cubic. For acK, o,a” will
denote the conjugates of «. We define after [3] the function S from
K* to R by

s<a)=%{<a—a')2+(a'—a~)2+(a”—a)Z}.

Let 1,&,7 be a Z basis of Ox. For a=x+yé+2pe Ok x,Y,2¢€ Z, S(a)
is a positive definite quadratic form in y, 2, so that S(«) has a minimal
value on Ey.

Let us denote AK)={ee E%|e=x1, S() is minimum} and %, (K)
=EFEi\{z;ne ZHNAK) for ¢ € AK).

In [5], H. J. Godwin announced the following conjecture :

Conjecture. If ¢ € A(K), &€ B, (K) and S(e)>9, then e,¢, gen-
erate Bt Ey={e, ).

The purpose of this note is to show that this conjecture holds in
certain cases. We shall prove:

Theorem. Let K=Q(©), Irr (0: Q)= f(x)=2'—ma*—(m+3)x—1,
m e Z, with square free m*+8m-+9. Then we have 6 € JA(K), —1—-¢
e B(K) and Exz=<40, —1—86).

Remark 1. It is easy to see that f(x) is irreducible, so that K/@
is cubic. It is eyclic and consequently totally real, because +. T)—, e Z.
It is also easy to see that we can limit our consideration to the case
m>=—1. This will be supposed throughout in the sequel.

Remark 2. This kind of fields has been considered by K. Uchida
[8], E. Thomas [7] and M.-N. Gras [4].

2. The following propositions will be utilized for the proof of
Theorem.

Proposition 1 (H. Brunotte and F. Halter-Koch [1]). Let ¢,
e A(K), ¢, € B, (K), then (Ef%: (e, &p)=4.

Proposition 2 (E. H. Grossman [6], M. Watabe [9]). Suppose
K/Q to be totally real, le Z,1=22,5eEx. Then the only possible
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solutions of 1'+1=4 are given by r=a root of unity.

Proposition 3 (H. J. Godwin [5], H. Brunotte and F. Halter-Koch
[1D). Let K be a totally real cubic field and A(K) and B, (K) for
e A(K) be as in Proposition 1. Then,

S <9S(),  Sleie;) <8S(e)S(ey)
for any e e E%, & ¢ AK), ¢ € B, (K).

Proposition 4. Suppose B to be totally real and p*—Af—Bp—1
=0, A,BeZ. Then the following holds:

(i) S(P)=A’+3B,

(ii) (1/2){(ﬁ2—ﬁ'2)z+(ﬁ’2——‘B"z)z-l—(ﬁ”z—‘82)2}=A"+4AZB—I-BZ—E-GA,

(lil) (‘8—‘B')(ﬂz—ﬁ’z)-|-(‘3/—-‘3’/)(‘8/2—ﬁ”z)—l—(ﬁ”—ﬁ)(ﬁ"z—-ﬁz)

=2A4°*+TAB+9.

3. Proof of Theorem. First we shall show 6 e A(K). As
+/'D, is square free, we have Ox=Z+Z0+Z¢ (cf. [2]). Let u=1 be
any unit in ;. Then % can be written as u=a-+b0+cé* a,b,cec Z,
(b, ¢)x(0,0). This yields

S(u)=%{b2(0—0’)z+ (6 — 07+ 2be(— 06— ")

+ b¥E — 0//)2 + 02(0/2 _ 0//2)2 +2be(d — 0//)(012_0//2)
+ bz(a// _0)2+ 02(0//2 . 02)2 _|_ 2bc(0// _0)(01/2 _ 02)}.
Using Proposition 4, we have
Sw)={b*+@2m+1)bec+ (m*+m~+1)c*}S(6)

_ {<b+ 27”2"‘1_(;)24—%02}8(0)__28(0),

as m,b,ce Z and (b, ¢)2(0,0). Therefore 6 ¢ A(K).

Next, we shall show that —1—60¢c B,(K). In fact, it is obvious
that S(@)=S(—1—6), so that —1—6 ¢ JA(K). Suppose —1—0=0" for
some rational integer n. It is clear that n=0, nx+1. If n>2, then
—0=0"+1, 6, —0 ¢ E, in contradiction to Proposition 2. We have
also a contradiction for n< —2 in virtue of Proposition 2. Thus we
obtain —1—6 ¢ B, K).

Now, for m=—1,1 and 2, our Theorem is seen from the table in
[3], so that we have only to consider the case m>4. Let us denote E,
={f, —1—6). Then we have (E}%: E,)<4 in virtue of Proposition 1.

(a) Suppose 2|(E%:E,), then there exists ¢e Ej such that &
=0(—1—6Y, e E,, where i, j € {0, 1}.

We examine the different cases. If (4, /)=(0,0), then =1, e ¢ E,
so that e=1 as KcR. This contradicts toee F,. If (,7)=(1,0), then
&=0. Hence we have &+1=0+1, ¢,0+1c E,. This is also a con-
tradiction by Proposition 2. If (¢, )=(0, 1), then —0=¢*+1,¢, —0 € E,
contradicting to Proposition 2. If (¢,/)=(,1), then &=60(—1—6), so
that —1/60=(¢/0)*+1, ¢/8, —1/6 € E. This also leads us to contradic-
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tion in virtue of Proposition 2. Thus we obtain 2/(E%: E,).

(b) Suppose 3|(F%:E,), then there exists 1¢ E; such that 22
=0*(—1—0), 2¢ K\, where k,1€{0,1,2}. We can easily verify that
(k,D=(0,0), 1,0), (0,1), 1,2), (2,1) in virtue of Proposition 2 as we
have seen in (a). If (k,D=(,1), then 2=6(—1—6). We have
e AK) and —1—0 ¢ B,(K). So we obtain the following inequality :

S(—1—-0P=SA+6)P*<SA)P<9ISO(—1—0))=9S(6(1+6))
<278(1+6y,
in virtue of the definition of the function S and Proposition 3. Hence
we have S(1+6)<27.

Now, it is easily seen that the roots of f(x) can be denoted by 6,
¢’,0” so that they are situated as follows:

—2<0<~1, —1<0'<0 and m+1<0’"<m+2 when m=1.
Then we have (6—6)'>0, (' —6")*>(m+1)%, (6" —60)*>(m+2)?, so that

S(1+0)= %{(0 =0+ —0")+ (0" —0)}

>%(2m2+6m+ 5)>21,

in virtue of our assumption m>4. Thus we have 27<S(1+46)<2T7.
This is a contradiction.

If (k,1)=(2,2), then 2*=6*(—1—6)*, so that we have (6(—1—8)/¢)*
=60(—1—6). This case is reduced to the case (k,0)=(1, 1), so that we
have also a contradiction. Thus we obtain 3y(E'%: E).

Therefore we conclude that Ex=E,={, —1—6).

Corollary. We have E;={0,6), where ¢ is any conjugate of 6.

Proof. We consider the polynomial A(x)=x*—(m+3)x*+max+1.
It is clear that A(z+1)=f(x). Since A(—1/0)=1/6)f(6), we have
0+1=-—1/6° for some ¢ € Gal (K/Q). Hence we get E;={,0"). We
also obtain E';= {6, 6°*) in virtue of Ng,0=1.
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