19. On Consistency Relations for Polynomial Splines at Mesh and Mid Points

By Manabu SAKAI
Department of Mathematics, Faculty of Science, Kagoshima University
(Communicated by Shokichi Iyanaga, m. J. a., Feb. 12, 1983)

Let $Q_{p+1}(x)$ be the B-spline defined by

$$
Q_{p+1}(x)=(1 / p!) \sum_{i=0}^{p+1}(-1)^{i}\binom{p+1}{i}(x-i)_{+}^{p}
$$

then we take a polynomial spline function $s(x)$ of the form;

$$
\begin{equation*}
s(x)=\sum_{i=-p}^{n-1} \alpha_{i} Q_{p+1}(x / h-i), \quad n h=1 \tag{*}
\end{equation*}
$$

with undetermined coefficients $\alpha_{i}, i=-p,-p+1, \cdots, n-1$.
Various consistency relations have been obtained by many authors ([1]-[5]). Here we are concerned with consistency relations at mesh and mid points. If $p=2$, i.e., s is quadratic spline, the following consistency relation is known :

$$
(1 / 8)\left(s_{i+1}+6 s_{i}+s_{i-1}\right)=(1 / 2)\left(s_{i+1 / 2}+s_{i-1 / 2}\right)
$$

where $s_{i}=s(i h)$ and $s_{i+1 / 2}=s((i+1 / 2) h) \quad$ ([3]).
In the present paper we shall generalize the above relation for polynomial splines of dimensions 1 and 2.

Theorem 1. Let s be a polynomial spline of the form (*). Then we have

$$
\begin{aligned}
& h^{k}\left(c_{0}^{(l)} s_{i}^{(k)}+c_{1}^{(l)} s_{i+1}^{(k)}+\cdots+c_{p}^{(l)} s_{i+p}^{(k)}\right) \\
& \quad=h^{l}\left(d_{0}^{(k)} s_{i+1 / 2}^{(l)}+d_{1}^{(k)} s_{i+3 / 2}^{(l)}+\cdots+d_{p-1}^{(k)} s_{i+p-1 / 2}^{(l)}\right) \\
& \quad \text { for } k=0,1, \cdots, p-1 \text { and } l=0,1, \cdots, p
\end{aligned}
$$

where

$$
c_{i}^{(l)}=Q_{p+1}^{(l)}(p+1 / 2-i), \quad d_{i}^{(k)}=Q_{p+1}^{(k)}(p-i) .
$$

Proof. Since $Q_{p+1}(x) \equiv 0$ for $x \leq 0$ and $x \geq p+1$,

$$
\begin{aligned}
c_{i}^{(i)} & =0 & & \text { for } i \leq-1 \text { and } i \geq p+1 \\
d_{i}^{(x)} & =0 & & \text { for } i \leq-1 \text { and } i \geq p .
\end{aligned}
$$

Hence, by substituting (*) into the desired relation, we have
"coefficient of α_{j} of the left-hand side"

$$
\begin{aligned}
& =\sum_{m=0}^{p} c_{m}^{(l)} Q_{p+1}^{(k)}(i+m-j)=\sum_{m=-\infty}^{\infty} Q_{p+1}^{(l)}(p+1 / 2-m) Q_{p+1}^{(k)}(i+m-j) \\
& =\sum_{m=-\infty}^{\infty} Q_{p+1}^{(k)}(p-m) Q_{p+1}^{(l)}(i+m+1 / 2-j)
\end{aligned}
$$

by changing the index,
"coefficient of α_{j} of the right-hand side"

$$
\begin{aligned}
& =\sum_{m=0}^{p-1} \boldsymbol{d}_{m}^{(k)} Q_{p+1}^{(l)}(i+m+1 / 2-j) \\
& =\sum_{m=-\infty}^{\infty} Q_{p+1}^{(k)}(p-m) Q_{p+1}^{(l)}(i+m+1 / 2-j) .
\end{aligned}
$$

This completes the proof of this theorem.
As examples of the above relation, let $s(x)$ be a quartic spline, then
$(1 / 384) h^{k}\left(s_{i+2}^{(k)}+76 s_{i+1}^{(k)}+230 s_{i}^{(k)}+76 s_{i-1}^{(k)}+s_{i-2}^{(k)}\right)$

$$
= \begin{cases}(1 / 24)\left(s_{i+3 / 2}+11 s_{i+1 / 2}+11 s_{i-1 / 2}+s_{i-3 / 2}\right), & k=0 \\ (1 / 6)\left(s_{i+3 / 2}+3 s_{i+1 / 2}-3 s_{i-1 / 2}-s_{i-3 / 2},\right. & k=1 \\ (1 / 2)\left(s_{i+3 / 2}-s_{i+1 / 2}-s_{i-1 / 2}+s_{i-3 / 2}\right), & k=2 \\ \left(s_{i+3 / 2}-3 s_{i+1 / 2}+3 s_{i-1 / 2}-s_{i-3 / 2},\right. & k=3 .\end{cases}
$$

These relations are useful for the investigation of the quartic spline interpolation problem at mid points:

$$
s_{i+1 / 2}=f_{i+1 / 2} \quad \text { for given function } f(x)
$$

Similarly we have the consistency relation for doubly polynomial splines.

Theorem 2. Let $s(x, y)$ be a doubly polynomial spline function of the form:

$$
s(x, y)=\sum_{i, j=-p}^{n-1} \alpha_{i, j} Q_{p+1}(x / h-i) Q_{p+1}(y / h-j)
$$

Then we have

$$
\begin{aligned}
& h^{l+m}\left(c_{0,0}^{(k, r)} s_{i, j}^{(l, m)}+c_{0,1}^{(k, r)} s_{i, j+1}^{(l, m)}+\cdots+c_{p, p}^{(k, r)} s_{i+p, j+p}^{(l, m)}\right) \\
& =h^{k+r}\left(d_{0,0}^{(l, m)} s_{i+1 / 2, j+1 / 2}^{(k, r)}+d_{0,1}^{(l, 2)} s_{i+1, k), 2+j+3 / 2}^{(k+1)}+\cdots+d_{p-1, p-1}^{(l, m)} s_{i+p-1 / 2, j+p-1 / 2}^{(k, r)}\right) \\
& \quad l, m=0,1, \cdots, p-1 \text { and } k, r=0,1, \cdots, p
\end{aligned}
$$

where

$$
\begin{aligned}
& s_{i, j}^{(l, m)}=\frac{\partial^{l+m}}{\partial x^{l} \partial y^{m}} s(i h, j h) \\
& s_{i+1 / 2, j+1 / 2}^{(k, r)}=\frac{\partial^{k+r}}{\partial x^{k} \partial y^{r}} s((i+1 / 2) h,(j+1 / 2) h) \\
& c_{i, j}^{(k, r)}=Q_{p+1}^{(k)}(p+1 / 2-i) Q_{p+1}^{(r)}(p+1 / 2-j) \\
& d_{i, j}^{(l, m)}=Q_{p+1}^{(l)}(p-i) Q_{p+1}^{(m)}(p-j) .
\end{aligned}
$$

From above, we have the consistency relation for doubly quadratic spline $s(x, y)$:

$$
\begin{aligned}
(1 / 64)\{ & s_{i+1, j+1}+s_{i+1, j-1}+s_{i-1, j+1}+s_{i-1, j-1} \\
& \left.+6\left(s_{i+1, j}+s_{i, j+1}+s_{i, j-1}+s_{i-1, j}\right)+36 s_{i, j}\right\} \\
= & (1 / 4)\left(s_{i+1 / 2, j+1 / 2}+s_{i+1 / 2, j-1 / 2}+s_{i-1 / 2, j+1 / 2}+s_{i-1 / 2, j-1 / 2}\right) .
\end{aligned}
$$

This relation is required for the investigation of the biquadratic spline interpolation at mid points :

$$
s_{i+1 / 2, j+1 / 2}=f_{i+1 / 2, j+1 / 2} \quad \text { for given function } f(x, y) .
$$

And we also have the relation which is useful for the construction of the difference scheme for a boundary value problem $\Delta u=f$:

$$
\begin{aligned}
& (1 / 4)\left\{s_{i+1, j+1}+s_{i+1, j-1}+s_{i-1, j+1}+s_{i-1, j-1}\right. \\
& \left.\quad+2\left(s_{i+1, j}+s_{i, j+1}+s_{i, j-1}+s_{i-1, j}\right)-12 s_{i, j}\right\}
\end{aligned}
$$

$$
=(1 / 4) h^{2}\left(\Delta s_{i+1 / 2, j+1 / 2}+\Delta s_{i+1 / 2, j-1 / 2} \Delta s_{i-1 / 2, j+1 / 2}+\Delta s_{i-1 / 2, j-1 / 2}\right) .
$$

The discretization error of this nine-point difference scheme is

$$
-(1 / 24) h^{4}\left(u_{i, j}^{(4,0)}+u_{i, j}^{(0,4)}\right)+\cdots
$$

On the other hand, those of the central difference scheme and the difference scheme associated with cubic spline collocation method are $(1 / 12) h^{4}\left(u_{i, j}^{(4,0)}+u_{i, j}^{(0,4)}\right)+\cdots$ and $-(1 / 12) h^{4}\left(u_{i, j}^{(4,0)}+u_{i, j}^{(0,4)}\right)+\cdots$, respectively.

In another paper we shall consider the application of this scheme to the numerical solution of the boundary value problem: $\Delta u=f$.

Acknowledgement. The author is grateful to Prof. A. Mizutani of Gakushuin University for very helpful suggestions in the revision of this paper.

References

[1] J. Ahlberg, E. Nilson, and J. Walsh: The Theory of Splines and their Applications. Academic Press, New York (1967).
[2] W. Hoskins and D. Meek: Linear dependence relations for polynomial splines at midpoints. BIT, 15, 272-276 (1975).
[3] W. Kammerer, G. Reddien, and R. Varga: Quadratic splines. Numer. Math., 22, 241-259 (1974).
[4] T. Lucas: Error bounds for interpolating cubic splines under various end conditions. SIAM J. Numer. Anal., 11, 569-584 (1974).
[5] M. Sakai: Some new linear relations for odd degree polynomial splines at mid-points. Proc. Japan Acad., 59A, 24-25 (1983).

