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1. Introduction. In this paper we are concerned with the strong
solution of the following nonlinear hyperbolic evolution equation

(E) ddt (t)+A(t)+OI( -(t) f(t), 0<t<T_

in a real Hilber saee H. Here A is a. ositive self-adjoin oerator
in H. Pot each t e [0, T], K(t) is a closed convex subse of H and
is he subdifferential o.f I, which is the indicator function of K(t).
We denote the inner rodue and he norm in H by (., .) and
respectively. or each t e [0, T], le P(t) denote the ro.jeetion operator
o.f H onto K(t). oreover we assume the following conditions for A
and K(t).

(A.1) here exists e L(0, T H) such tha for a.e. t e [0,
every z e K(t) and s>O, (l+sA)-’(+s(t)) e K(t).

(A.) here exists a strongly absolutely continuous function
b [0, T]H such ha b(t) e D(A/) K(t) for a.e. t e [0, T] and
e L(0, T; H).

(A.3) For each x e H, P(.)x [0, T]H is strongly measurable.
(A.4) There exists a. continuous function :R+R such that

for each h e ]0, T[ and v e C([0, T]; H),

P(s+h)v(s)-P(s)v(s)l dsh% sup [v(t)l
te[0,T]

Definition. Let u: [0, T]H. Then u is called a. strong solution
of (E) on [0, T] if (i) u e C([0, T] H), (ii) du/dt is strongly absolutely
continuous on [0, T], (iii) u(t) e D(A) and du(t)/dt e K(t) for a.e. t e [0, T]
and (iv) u saisfies (E) for a.e. t e [0, T].

Now we state our main theorem.
Theorem. Suppose that the assumptions stated above are satis-

fied. Then for each f e W’2(0, T H), Uo e D(A) and Vo e D(A/2) K(0),
the equation (E) has a unique strong solution u on [0, T] with u(O)=Uo
and (du/dt)(O)=vo. Moreover, u has the following properties.

( ) AueL(O,T;H).
(ii) u(t) e D(A2) for every t e [0, T] and A2u e C([0, T] H).
(iii) du(t)/dt e D(A) for a.e. t e [0, T] and Adu/dt e L(0, T ;H).
(vi) d2u/ dt e L(O, T; H).
In the case where K(t)=K is independent of t, the existence and
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uniqueness of the strong solution of (E) are treated by H. Brzis [3]
and the regularity by V. Barbu [1]. These results can be found in V.
Barbu [2]. We quoted the assumptions (A.1)-(A.4) from H. Brzis [4].

2. The outline of the proof. The pro.o o the uniqueness is
not difficult and therefore we shall omit it.

To. prove the existence, we consider the approximate equations
du du -(t)-f(t),
dt’-(t)+Au’(t)+B dr’(,1 )

du,Uo, Vo,(0) (0)
dt

For the solu-for , 0, where A,=A(I+A)- and B=,-’(1-P(t)).
tion u,, o.f (1), we have the following lemma.

Lemma 1. ( ) lu,,(t)lgC. (ii)

(iii)

(iv) Bdu’dt ]l(0,r;-)-----C(1-t--)
Here C, C, C and C are positive constants independent of , and t.

The outline of the proof of Lemma I is as follows. We set du,/dt
=v,. (i) and (ii) can be shown by calculating

2_ d ] 1/2

We ca,n obtain (iii) noticing
(2])-’ (1 P(s+ h))v,,(s+ h)I-(2)- (1 P(s))v,(s)

--(2-(1--P(s))v,(s), v,(s+ h)-v,(s))
=I+II+III,
I= (22)- (1 P(s+ h))v,(s+ h)I (22)- (1 P(s+ h))v,(s) ]

(2-’(1 P(s+ h))v,(s), v,,(s+ h) v,,(s)),
II--(22)- (1-P(s+ h))v,(s) ]-(22)- (1 P(s))v,(s) ,
III=--((P(s+ h) P(s))v,(s), v,(s+ h) v,(s)),

I’-lv’(s+h)-v’(s)l<lh----- eE0,rsup -(t)dv ,
II <: P(s+ h)v,(s) P(s)v,(s) Bv,(s)

+ (22)- P(s+ h)v,,(s) P(s)v,,(s)I,
IIIg2- P(s+ h)v,(s)- P(s)v,(s) v,,(s+ h) v,(s) I,

and the assumption (A.4). (iv) can be obtained by multiplying the
first equation o.f (1) by Btdu,/dt and integrating over [0, T].

Let0 be fixed. By the same manner as in Theorem 3.1 o. H.
Brzis [5], it ollows from Lemma 1 (iv) that lim0u,,=u and
lim0 du,/dt=du/dt exist in C([0, T] H) and u is the strong solution
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the equation

(t)+Au(t)+3I(
dt)

-u,t0=u0, du (0)=Vo.
dt

O<_t<_T

Letting 2-0 in Lemma 1 (iii) and using that u, is the solution of

(U) 3u
_
/u+f3t

-u+f
3t

u(t, x)=O

a.e. on (t,x) eQ;-
a.e. on (t, z) Q -a.e. on ’

3u >__ a.e. on Q,

(2) we obtain

(3) :dulds<M(l+:lAulds)ds
or any t e [0, T],

where M is a constant independent of and t. From (3), the assump-
tion (A.1) and the definition of 3IK(t), we get the following lemma.

Lemma 2. ( ) IA,u,(t)l<C. (ii) / A .du’-(t) <C.
du, du (0,;)C"(iii) A/(I+A)----(t) <=C. (iv)

Here C, C, C and C are constants independent of and t.
If , 60, then by using (2) and the monotonicity of 3I() we have

o.r a.e. s e [0, T]
1 d {1 d ()_ d ()1( 4 )
2 ds ds ds

+ A/(1 +A)-u(s)--A/(1 +A)-u(s)l}
=< (Au(s)-Au(s), Ao- (s)-A du (s))
< (. Au(s) + Au(s) .)( A du, (s) + A du (s) l).- cls

Integrating (4)over [0, T] and using Lemma 2 (i) and (ii), it ollows
that lim_0 uo=u and lim,0 du/dt=du/dt exist in C([0, T] H). By the
standard theory o maximal monotone operators, we can prove that u
is the strong solution o.f (E) and satisfies the properties (i)-(iv) of
Theorem.

:. txample. Let/2 be a bounded domain in R having a suf-
ficientl smooth bo.undary F. We set Q ]0, T[ tO and X ]0, T[ F.
Let e L(0, T H) be such that 3/3t e L(Q) and (t, x)=<0 a.e. on X.
Consider the ollowing hyperbolic unilateral problem:
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u(O, x)=Uo(X) =--:-.(0, x)=Vo(X) a.e. on tO.

Corollary. Let Uo, Vo and f be given satisfying"

Uo e H(9) H([2), Vo e H(tO), Vo(X)>=(O, x) a.e. on 9.

ff, e L2(Q).

Then problem (U) has a unique solution u which satisfies"
u e C([0, T]; H(9)) L(0, T H(9)),

3--U-u e C([0, T]; L2(9))Q L(0, T; H(9)),
t
3u e L(0, T; L(tO)).
t

Proof of Corollary. We take H=L(9), Av=-Av for v e D(A)
H(/2) D H(/2) and

K(t)= {v e L(tg) v(x)4x(t, x) a.e. on 9}.
Taking a(t)= --A4x(t, x) and b(t)=max {0, +(t, x)} the assumption (A.1)
and (A.2) is realized, respectively. Since P(t)v(x)=max {v(x), +(t, x)},
the assumption (A.3) is satisfied. The assumption (A.4) is realized
taking (o /tl](0,r;,) (constant). Therefore we can apply Theorem
and we know that the equation (E) has a unique strong solution u.
By the same manner as in Corollary 3.4 in Chapter IV of V. Barbu
[2], it follows that u satisfies (U) in the generalized sense.
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