18. On Nonlinear Hyperbolic Evolution Equations with Unilateral Conditions Dependent on Time

By Shigeru Sasaki
(Communicated by Kôsaku Yosida, m. J. A., Feb. 12, 1983)

1. Introduction. In this paper we are concerned with the strong solution of the following nonlinear hyperbolic evolution equation

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}(t)+A u(t)+\partial I_{K(t)}\left(\frac{d u}{d t}(t)\right) \ni f(t), \quad 0 \leqq t \leqq T \tag{E}
\end{equation*}
$$

in a real Hilbert space H. Here A is a positive self-adjoint operator in H. For each $t \in[0, T], K(t)$ is a closed convex subset of H and $\partial I_{K(t)}$ is the subdifferential of $I_{K(t)}$ which is the indicator function of $K(t)$. We denote the inner product and the norm in H by (\cdot, \cdot) and $|\cdot|$, respectively. For each $t \in[0, T]$, let $P(t)$ denote the projection operator of H onto $K(t)$. Moreover we assume the following conditions for A and $K(t)$.
(A.1) There exists $a \in L^{2}(0, T ; H)$ such that for a.e. $t \in[0, T]$, every $x \in K(t)$ and $\varepsilon>0,(1+\varepsilon A)^{-1}(x+\varepsilon a(t)) \in K(t)$.
(A.2) There exists a strongly absolutely continuous function $b:[0, T] \rightarrow H$ such that $b(t) \in D\left(A^{1 / 2}\right) \cap K(t)$ for a.e. $t \in[0, T]$ and $A^{1 / 2} b$ $\in L^{1}(0, T ; H)$.
(A.3) For each $x \in H, P(\cdot) x:[0, T] \rightarrow H$ is strongly measurable.
(A.4) There exists a continuous function $\omega: R^{+} \rightarrow R^{+}$such that for each $h \in] 0, T[$ and $v \in C([0, T] ; H)$,

$$
\int_{0}^{T-h}|P(s+h) v(s)-P(s) v(s)|^{2} d s \leqq h^{2} \omega\left(\sup _{t \in[0, T]}|v(t)|\right) .
$$

Definition. Let $u:[0, T] \rightarrow H$. Then u is called a strong solution of (E) on $[0, T]$ if (i) $u \in C^{1}([0, T] ; H)$, (ii) $d u / d t$ is strongly absolutely continuous on [0,T], (iii) $u(t) \in D(A)$ and $d u(t) / d t \in K(t)$ for a.e. $t \in[0, T]$ and (iv) u satisfies (E) for a.e. $t \in[0, T]$.

Now we state our main theorem.
Theorem. Suppose that the assumptions stated above are satisfied. Then for each $f \in W^{1,2}(0, T ; H), u_{0} \in D(A)$ and $v_{0} \in D\left(A^{1 / 2}\right) \cap K(0)$, the equation (E) has a unique strong solution u on $[0, T]$ with $u(0)=u_{0}$ and $(d u / d t)(0)=v_{0}$. Moreover, u has the following properties.
(i) $A u \in L^{\infty}(0, T ; H)$.
(ii) $u(t) \in D\left(A^{1 / 2}\right)$ for every $t \in[0, T]$ and $A^{1 / 2} u \in C([0, T] ; H)$.
(iii) $d u(t) / d t \in D\left(A^{1 / 2}\right)$ for a.e. $t \in[0, T]$ and $A^{1 / 2} d u / d t \in L^{\infty}(0, T ; H)$.
(vi) $d^{2} u / d t^{2} \in L^{2}(0, T ; H)$.

In the case where $K(t)=K$ is independent of t, the existence and
uniqueness of the strong solution of (E) are treated by H. Brézis [3] and the regularity by V. Barbu [1]. These results can be found in V. Barbu [2]. We quoted the assumptions (A.1)-(A.4) from H. Brézis [4].
2. The outline of the proof. The proof of the uniqueness is not difficult and therefore we shall omit it.

To prove the existence, we consider the approximate equations

$$
\left\{\begin{array}{l}
\frac{d^{2} u_{\varepsilon, \lambda}}{d t^{2}}(t)+A_{\varepsilon} u_{s, \lambda}(t)+B_{\lambda}^{t} \frac{d u_{\varepsilon, \lambda}}{d t}(t)=f(t), \quad 0 \leqq t \leqq T \tag{1}\\
u_{s, \lambda}(0)=u_{0}, \quad \frac{d u_{\varepsilon, \lambda}}{d t}(0)=v_{0},
\end{array}\right.
$$

for $\varepsilon, \lambda>0$, where $A_{s}=A(1+\varepsilon A)^{-1}$ and $B_{\lambda}^{t}=\lambda^{-1}(1-P(t))$. For the solution $u_{s, \lambda}$ of (1), we have the following lemma.

Lemma 1. (i) $\left|u_{\mathrm{s}, 2}(t)\right| \leqq C_{1}$. (ii) $\left|\frac{d u_{s, 2}}{d t}(t)\right| \leqq C_{2}$.
(iii)

$$
\int_{0}^{t}\left(B_{\lambda}^{s} \frac{d u_{\varepsilon, \lambda}}{d s}, \frac{d^{2} u_{\varepsilon, \lambda}}{d s^{2}}\right) d s \geqq-C_{3}\left(\int_{0}^{t}\left|B_{\lambda}^{s} \frac{d u_{s, \lambda}}{d s}\right|^{2} d s\right)^{1 / 2}
$$

for any $t \in[0, T]$.
(iv) $\left\|B_{i} \cdot \frac{d u_{\varepsilon, 2}}{d t}\right\|_{L^{2}(0, T ; H)} \leqq C_{4}\left(1+\frac{1}{\varepsilon}\right)$.

Here C_{1}, C_{2}, C_{3} and C_{4} are positive constants independent of ε, λ and t.
The outline of the proof of Lemma 1 is as follows. We set $d u_{\varepsilon, 2} / d t$ $=v_{\mathrm{s}, 2}$. (i) and (ii) can be shown by calculating

$$
2^{-1} \frac{d}{d t}\left\{\left|v_{s, 2}-b\right|^{2}+\left|A_{s}^{1 / 2} u_{s, 2}\right|^{2}\right\} .
$$

We can obtain (iii) noticing

$$
\begin{aligned}
&(2 \lambda)^{-1} \mid\left.(1-P(s+h)) v_{s, \lambda}(s+h)\right|^{2}-(2 \lambda)^{-1}\left|(1-P(s)) v_{\varepsilon, \lambda}(s)\right|^{2} \\
& \quad-\left(\lambda^{-1}(1-P(s)) v_{\varepsilon, \lambda}(s), v_{\varepsilon, \lambda}(s+h)-v_{\varepsilon, \lambda}(s)\right) \\
&= I+I I+I I I, \\
& I=(2 \lambda)^{-1}\left|(1-P(s+h)) v_{\varepsilon, \lambda}(s+h)\right|^{2}-(2 \lambda)^{-1}\left|(1-P(s+h)) v_{\varepsilon, \lambda}(s)\right|^{2} \\
& \quad-\left(\lambda^{-1}(1-P(s+h)) v_{\varepsilon, \lambda}(s), v_{\varepsilon, \lambda}(s+h)-v_{\varepsilon, \lambda}(s)\right), \\
& I I=(2 \lambda)^{-1}\left|(1-P(s+h)) v_{\varepsilon, \lambda}(s)\right|^{2}-(2 \lambda)^{-1}\left|(1-P(s)) v_{\varepsilon, \lambda}(s)\right|^{2}, \\
& I I I=-\lambda^{-1}\left((P(s+h)-P(s)) v_{\varepsilon, \lambda}(s), v_{\varepsilon, \lambda}(s+h)-v_{\varepsilon, \lambda}(s)\right), \\
& I \leqq \lambda^{-1}\left|v_{\varepsilon, \lambda}(s+h)-v_{\varepsilon, \lambda}(s)\right|^{2} \leqq \frac{1}{\lambda} h^{2} \sup _{t \in[0, T]}\left|\frac{d v_{\varepsilon, \lambda}}{d t}(t)\right|^{2}, \\
& I I \leqq\left|P(s+h) v_{s, \lambda}(s)-P(s) v_{\varepsilon, \lambda}(s)\right|\left|B_{\lambda}^{s} v_{\varepsilon, \lambda}(s)\right| \\
&+(2 \lambda)^{-1}\left|P(s+h) v_{\varepsilon, \lambda}(s)-P(s) v_{s, \lambda}(s)\right|^{2}, \\
& I I I \leqq \lambda^{-1}\left|P(s+h) v_{s, \lambda}(s)-P(s) v_{\varepsilon, \lambda}(s)\right|\left|v_{\varepsilon, \lambda}(s+h)-v_{\varepsilon, \lambda}(s)\right|,
\end{aligned}
$$

and the assumption (A.4). (iv) can be obtained by multiplying the first equation of (1) by $B_{\lambda}^{t} d u_{s, 2} / d t$ and integrating over [$0, T$].

Let $\varepsilon>0$ be fixed. By the same manner as in Theorem 3.1 of H. Brézis [5], it follows from Lemma 1 (iv) that $\lim _{\lambda \rightarrow 0} u_{\varepsilon, \lambda}=u_{s}$ and $\lim _{\lambda \rightarrow 0} d u_{s, 2} / d t=d u_{s} / d t$ exist in $C([0, T] ; H)$ and u_{s} is the strong solution
of the equation

$$
\left\{\begin{array}{l}
\frac{d^{2} u_{s}}{d t^{2}}(t)+A_{s} u_{s}(t)+\partial I_{K(t)}\left(\frac{d u_{s}}{d t}(t)\right) \ni f(t), \quad 0 \leqq t \leqq T \tag{2}\\
u_{s}(0)=u_{0}, \quad \frac{d u_{s}}{d t}(0)=v_{0}
\end{array}\right.
$$

Letting $\lambda \rightarrow 0$ in Lemma 1 (iii) and using that u_{s} is the solution of (2) we obtain

$$
\begin{equation*}
\int_{0}^{t}\left|\frac{d^{2} u_{\mathrm{s}}}{d s^{2}}\right|^{2} d s \leqq M\left(1+\int_{0}^{t}\left|A_{s} u_{s}\right|^{2} d s\right) \quad \text { for any } t \in[0, T] \tag{3}
\end{equation*}
$$

where M is a constant independent of ε and t. From (3), the assumption (A.1) and the definition of $\partial I_{K(t)}$, we get the following lemma.

Lemma 2. (i) $\left|A_{6} u_{\mathrm{s}}(t)\right| \leqq C_{5}$.
(ii) $\varepsilon^{1 / 2}\left|A_{\mathrm{s}} \frac{d u_{s}}{d t}(t)\right| \leqq C_{6}$.
(iii) $\left|A^{1 / 2}(1+\varepsilon A)^{-1} \frac{d u_{\varepsilon}}{d t}(t)\right| \leqq C_{7}$.
(iv) $\left\|\frac{d^{2} u_{s}}{d t^{2}}\right\|_{L^{2}(0, T ; H)} \leqq C_{8}$.

Here C_{5}, C_{6}, C_{7} and C_{8} are constants independent of ε and t.
If $\varepsilon, \delta>0$, then by using (2) and the monotonicity of $\partial I_{K(t)}$ we have for a.e. $s \in[0, T]$

$$
\begin{align*}
& \frac{1}{2} \frac{d}{d s}\left\{\left|\frac{d u_{\varepsilon}}{d s}(s)-\frac{d u_{\delta}}{d s}(s)\right|^{2}\right. \tag{4}\\
& \left.\quad+\left|A^{1 / 2}(1+\varepsilon A)^{-1} u_{s}(s)-A^{1 / 2}(1+\delta A)^{-1} u_{\delta}(s)\right|^{2}\right\} \\
& \quad \leqq\left(A_{\varepsilon} u_{\varepsilon}(s)-A_{\delta} u_{\delta}(s), \varepsilon A_{s} \frac{d u_{\varepsilon}}{d s}(s)-\delta A_{\delta} \frac{d u_{\delta}}{d s}(s)\right) \\
& \quad \leqq\left(\left|A_{\varepsilon} u_{\varepsilon}(s)\right|+\left|A_{\delta} u_{\delta}(s)\right|\right)\left(\varepsilon\left|A_{\varepsilon} \frac{d u_{\varepsilon}}{d s}(s)\right|+\delta\left|A_{\delta} \frac{d u_{\delta}}{d s}(s)\right|\right)
\end{align*}
$$

Integrating (4) over $[0, T]$ and using Lemma 2 (i) and (ii), it follows that $\lim _{s \rightarrow 0} u_{s}=u$ and $\lim _{s \rightarrow 0} d u_{s} / d t=d u / d t$ exist in $C([0, T] ; H)$. By the standard theory of maximal monotone operators, we can prove that u is the strong solution of (E) and satisfies the properties (i)-(iv) of Theorem.
3. Example. Let Ω be a bounded domain in R^{n} having a sufficiently smooth boundary Γ. We set $Q=] 0, T[\times \Omega$ and $\Sigma=] 0, T[\times \Gamma$. Let $\psi \in L^{2}(0, T ; H)$ be such that $\partial \psi / \partial t \in L^{2}(Q)$ and $\psi(t, x) \leqq 0$ a.e. on Σ. Consider the following hyperbolic unilateral problem:
(U)

$$
\begin{array}{ll}
\frac{\partial u}{\partial t} \geqq \psi & \text { a.e. on } Q, \\
\frac{\partial^{2} u}{\partial t^{2}}=\Delta u+f & \text { a.e. on }\left\{(t, x) \in Q ; \frac{\partial u}{\partial t}>\psi\right\}, \\
\frac{\partial^{2} u}{\partial t^{2}} \geqq \Delta u+f & \text { a.e. on }\left\{(t, x) \in Q ; \frac{\partial u}{\partial t}=\psi\right\}, \\
u(t, x)=0 & \text { a.e. on } \Sigma,
\end{array}
$$

$$
u(0, x)=u_{0}(x) ; \quad \frac{\partial u}{\partial t}(0, x)=v_{0}(x) \quad \text { a.e. on } \Omega
$$

Corollary. Let u_{0}, v_{0} and f be given satisfying:

$$
\begin{aligned}
& u_{0} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega), \quad v_{0} \in H_{0}^{1}(\Omega), \quad v_{0}(x) \geqq \psi(0, x) \quad \text { a.e. on } \Omega . \\
& f, \frac{\partial f}{\partial t} \in L^{2}(Q) .
\end{aligned}
$$

Then problem (U) has a unique solution u which satisfies:

$$
\begin{aligned}
& u \in C\left([0, T] ; H_{0}^{1}(\Omega)\right) \cap L^{\infty}\left(0, T ; H^{2}(\Omega)\right) \\
& \frac{\partial u}{\partial t} \in C\left([0, T] ; L^{2}(\Omega)\right) \cap L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right), \\
& \frac{\partial^{2} u}{\partial t^{2}} \in L^{2}\left(0, T ; L^{2}(\Omega)\right)
\end{aligned}
$$

Proof of Corollary. We take $H=L^{2}(\Omega), A v=-\Delta v$ for $v \in D(A)$ $=H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and

$$
K(t)=\left\{v \in L^{2}(\Omega) ; v(x) \geqq \psi(t, x) \text { a.e. on } \Omega\right\}
$$

Taking $\alpha(t)=-\Delta \psi(t, x)$ and $b(t)=\max \{0, \psi(t, x)\}$ the assumption (A.1) and (A.2) is realized, respectively. Since $P(t) v(x)=\max \{v(x), \psi(t, x)\}$, the assumption (A.3) is satisfied. The assumption (A.4) is realized taking $\omega=\|\partial \psi / \partial t\|_{L^{2}(0, T ; H)}$ (constant). Therefore we can apply Theorem and we know that the equation (E) has a unique strong solution u. By the same manner as in Corollary 3.4 in Chapter IV of V. Barbu [2], it follows that u satisfies (U) in the generalized sense.

References

[1] V. Barbu: On the regularity of solutions of hyperbolic nonlinear equations. Ann. Mat. Pura Appl., 45, 303-319 (1973).
[2] -: Nonlinear Semigroups and Differential Equations in Banach Spaces. Noodhoff International Publ. (1976).
[3] H. Brézis: Problèmes unilatéraux. J. Math. Pures Appl., 51, 1-164 (1972).
[4] -: Un problème d'évolution avec contraintes unilatérales dépendant du temps. C.R. Acad. Sc. Paris, 274, 310-312 (1972).
[5] --: Opérateurs maximaux monotones. North-Holland Math. Studies (1973).

