16. Transmutation Theory for Certain Radial Operators

By Robert CARROLL University of Illinois

(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1983)

1. Introduction. For $Q_0 u = (\Delta_q u')' / \Delta_q$ based on a radial Laplace-Beltrami operator we studied general transmutation theory for operators $\hat{Q}u = Q_0 u + \hat{q}(x)u$ in [4] using various solutions of $\hat{Q}u = -k^2 u$ as important ingredients. In the present work we consider operators $\tilde{Q}u = x^2 Q_0 u + x^2 \{k^2 - \tilde{q}(x)\}u$ (with corresponding eigenfunction equations $\tilde{Q}u = \lambda^2 u$) and will concentrate on the case $\Delta_q = x^2$ which arises in various scattering problems (cf. [1], [2], [6]-[9], [11], [12]) so a certain amount of guideline information is available (cf. also [5]-B transmutes P into $Q, B: P \rightarrow Q$, if QBf = BPf for suitable f). We show here that with suitable modifications most of the constructions and techniques of the \hat{Q} theory have a version in the \tilde{Q} theory and we describe some of the basic transmutations and connection formulas.

2. Basic constructions. We take $\Delta_q = x^2$ and set $\varphi = xu$ so $Qu = \lambda^2 u$ is

(2.1)
$$x^2\varphi'' + x^2\{k^2 - \tilde{q}(x)\}\varphi = \lambda^2\varphi$$

(\tilde{q} real) and one writes $\lambda^2 = \sigma(\sigma+1) = \nu^2 - 1/4$ (so $\sigma \sim l =$ angular momentum and $\nu \sim l+1/2$). We denote by $\varphi(\nu, k, x)$ the "regular solution" of (2.1) ($\varphi \sim x^{\nu+1/2}$ as $x \to 0$) and by $f(\nu, \pm k, x)$ the "Jost solutions" (e.g. $f(\nu, -k, x) \sim e^{ikx}$ as $x \to \infty$) with the "Jost function" $f(\nu, -k) = W(f(\nu, -k, x), \varphi(\nu, k, x))$ (W(f, g) = fg' - f'g). Assume e.g. $\int_0^\infty x |\tilde{q}| dx < \infty$ and $\int_0^\infty x^2 |\tilde{q}| dx < \infty$ as in [2] but we do not emphasize hypotheses on \tilde{q} (cf. [1], [6], [9], [11], [12]); we want mainly $\varphi \sim \varphi_0$ and $f \sim f_0$ as e.g. $|\nu| \to \infty$, Re $\nu > 0$, where (corresponding to $\tilde{q} = 0$)

(2.2)
$$\varphi_0(\nu, k, x) = 2^{\nu} \Gamma(\nu+1) k^{-\nu} x^{1/2} J_{\nu}(kx);$$

$$f_0 = ((1/2) \pi k x)^{1/2} e^{(1/2) i \pi (\nu+1/2)} H^1_{\nu}(kx);$$

$$(f_0 = f_0(\nu, -k, x))$$
 and

 $f_0(\nu, -k) = 2^{\nu}(2/\pi)^{1/2} \Gamma(\nu+1) k^{-\nu+1/2} \exp\{(1/2)i\pi(\nu-1/2)\}.$

We think of k as fixed here and one knows then that $f(\nu, -k, x)$ is entire in ν while $\varphi(\nu, k, x)$ and $f(\nu, -k)$ are analytic for $\operatorname{Re} \nu > 0$ (the range of analyticity can be enlarged with suitable hypotheses on \tilde{q}). We follow formally now the procedure in [2] with some refinements and elaboration. Thus set $g(\nu, -k, r) = f(\nu, -k, r)/r$ and let Z denote the zeros ν_j (if any) of $f(\nu, -k)$ in $\operatorname{Re} \nu > 0$ with R. CARROLL

$$M^{2}(\nu_{j}, k) = \int_{0}^{\infty} g^{2}(\nu_{j}, -k, r) dr.$$

Such ν_j are simple zeros and one sets $d\rho(\nu) = \sum \delta(\nu - \nu_j)/M^2(\nu_j, k)$ for $\nu \in \mathbb{Z}$ with $d\rho(\nu) = 2i\nu^2 d\nu/\pi f(\nu, -k)f(-\nu, -k)$ for $\nu \in [0, i\infty)$. From [2] one has the formal completeness relation

$$\delta(r-s) = \langle g(\nu, -k, r), g(\nu, -k, s) \rangle_{\rho} \sim \int g(\nu, -k, r) g(\nu, -k, s) d\rho(\nu)$$

and we show then (g_1, ρ^1) , etc. refer to an operator \hat{Q}_1 based on potential \tilde{q}_1).

Theorem 2.1. Define $\beta(r, s) = \langle g(\nu, -k, r), g_1(\nu, -k, s) \rangle_{\rho}$ and $\tilde{\beta}(r, s) = \langle g(\nu, -k, r), g_1(\nu, -k, s) \rangle_{\rho^1}$ with $\tilde{\mathcal{B}}f(s) = \langle \beta(r, s), f(r) \rangle$ and $\tilde{B}f(r) = \langle \tilde{\beta}(r, s), f(s) \rangle$ for suitable f. The r and s brackets refer to distribution pairings on $[0, \infty)$ and one has triangularity $\beta(r, s) = 0$ for s > r with $\tilde{\beta}(r, s) = 0$ for r > s. Set $\mathfrak{G}f(\nu) = \hat{f}(\nu) = \int_0^{\infty} f(s)g(\nu, -k, s)ds$ so that formally $G\hat{f}(r) = \mathfrak{G}^{-1}\hat{f}(r) = f(r) = \langle \hat{f}(\nu), g(\nu, -k, r) \rangle_{\rho}$. Then $\tilde{B}: \tilde{Q}_1 \to \tilde{Q}$ and $\tilde{\mathcal{B}}(\sim \tilde{B}^{-1}): \tilde{Q} \to \tilde{Q}_1$ are transmutations with $\tilde{\mathcal{B}}\{g(\nu, -k, \cdot)\}(r) = g_1(\nu, -k, r)$ and $\tilde{B}\{g_1(\nu, -k, \cdot)\}(r) = g(\nu, -k, r)$. Set $B = \tilde{\mathcal{B}}^*$ (so $Bf(r) = \mathfrak{G}_1 \mathfrak{B}f$ (with $\mathfrak{B} = B^{-1}$).

We indicate next a connection to an exterior transmutation developed in [7], [8]. Thus for Q_0 based on $\Delta_Q = x^{n-1}$ one considers $\tilde{Q} = x^2Q_0 + x^2\{k^2 - \tilde{q}(x)\}$ and $\tilde{P} = x^2Q_0 + x^2k^2$. For suitable \tilde{q} a kernel K(r, s) is constructed in [7], [8] (by successive approximations) such that the formula

(2.3)
$$u(r, \cdot) = \{B_e h\}(r, \cdot) = h(r, \cdot) + \int_r^\infty s^{n-3} K(r, s) h(s, \cdot) ds$$

links suitable solutions h of $(\varDelta_n + k^2)h = 0$ to corresponding solutions uof $\{\varDelta_n + (k^2 - \tilde{q}(r))\}u = 0$. The kernel K(r, s) satisfies $\tilde{Q}_r K = \tilde{P}_s K$ for s > rwith $2r^{n-2}K(r, r) = \int_r^\infty s\tilde{q}(s)ds$. If we write $\check{K}(r, s) = K(r, s)Y(s-r)$ (Y the Heaviside function) then one can show

Theorem 2.2. For suitable \tilde{q} the map $B_e f(r) = f(r) + \langle \check{K}(r,s), f(s) \rangle$ is a transmutation $\tilde{P} \rightarrow \tilde{Q}$ and for n=3, $\delta(s-r) + \check{K}(r,s) \sim \tilde{\beta}(r,s)$ $= \langle g(\nu, -k, r), g_1(\nu, -k, s) \rangle_{\rho^1}$ (where $\tilde{Q}_1 \sim \tilde{P}$ and ρ^1 is the "free" measure indicated below).

Example 2.3. We denote by "free" the case where $\tilde{q}=0$ so that (2.2) holds. In this event $f(\nu, -k)$ has no zeros for $\operatorname{Re}\nu>0$ and $d\rho(\nu) = -(\nu/\pi k) \sin \pi \nu d\nu$ is the "free" measure. The inversion theory for \mathfrak{G} is the Kontorovič-Lebedev theory which can be treated in various forms (cf. [10]). The version which we obtain below (cf. (2.5)) specializes for $\tilde{q}=0$ to

(2.4)
$$\widetilde{G}(\nu) = \int_0^\infty G(s) H^1(ks) ds$$
; $rG(r) = \frac{1}{2} \int_{-i\infty}^{i\infty} \nu \widetilde{G}(\nu) J_{\nu}(kr) d\nu$.

In order to arrive at a general form of (2.4) we suppose $f(\nu, -k)$ has no zeros for $\operatorname{Re}\nu > 0$ so that $d\rho(\nu) = \hat{\rho}(\nu)d\nu$. From properties of $f(\pm\nu, -k, x)$ and $\varphi(\pm\nu, k, x)$ one has

$$rf(r) = \langle \hat{f}(\nu), f(\nu, -k, r) \rangle_{\rho} = \frac{1}{2} \int_{-i\infty}^{i\infty} \hat{f}(\nu) f(\nu, -k, r) \hat{\rho}(\nu) d\nu$$

and from this

(2.5)
$$rf(r) = -(i/\pi) \int_{-i\infty}^{i\infty} \nu \hat{f}(\nu) \Phi(\nu, k, r) d\nu$$

where $\Phi(\nu, k, r) = \varphi(\nu, k, r) / f(\nu, -k)$ (cf. [4]) and using the formal relation (*) $-(i\mu/\pi) \int_0^\infty \Phi(\mu, k, s)g(\nu, -k, s)ds/s = \delta(\mu-\nu)$ arising from (2.5) we show

Theorem 2.4. Given absolutely continuous $d\rho(\nu) = \hat{\rho}(\nu)d\nu$ the inversion (2.5) holds. If \tilde{Q} and \tilde{Q}_1 both have continuous spectrum then B is characterized by $B\{g_1(\nu, -k, \cdot)\}(r) = (\hat{\rho}/\hat{\rho}_1)(\nu)g(\nu, -k, r)$ and in addition

(2.6) $B\{\Phi_1(\nu, k, s)/s\}(r) = \langle \beta(r, s), \Phi_1(\nu, k, s)/s \rangle = \Phi(\nu, k, r)/r.$

One can construct a formal proof of (2.6) following [4] (using analytic continuation) but a simpler formal verification can be obtained by looking at $\langle \beta(r,s), g(\nu, -k, r) \rangle = g_1(\nu, -k, s)$ as an extension of \mathfrak{G} to β , so that $\hat{\beta}(\nu, s) = g_1(\nu, -k, s)$, using the inversion (2.5), and then applying (*) for Φ_1 and g_1 .

3. General techniques. First, assuming $g(\nu, -k, 1)=0$ on the spectrum,

(3.1) $U(r,s) = \langle \hat{f}(\nu) / g(\nu, -k, 1), g(\nu, -k, r)g(\nu, -k, s) \rangle_{\rho}$

where $\hat{f}(\nu) = \bigotimes f(\nu)$ makes sense formally and using the idea of generalized translation developed by Hutson-Pym (cf. [3], [4]) one has for suitable \tilde{q}

Theorem 3.1. $U(r, s) = T_s^r f(s)$ represents a generalized translation for \tilde{Q} determined by $\tilde{Q}_r U = \tilde{Q}_s U$, U(1, s) = f(s), and $D_r U(1, s) = Cf(s)$ $= \langle \Gamma(s, \eta), f(\eta) \rangle$ where

 $\Gamma(s,\eta) = \langle g(\nu, -k, s)g(\nu, -k, \eta), Dg(\nu, -k, 1)/g(\nu, -k, 1) \rangle_{\rho}$ ($\tilde{Q}C = C\tilde{Q}$ and Cf(1) = f'(1)).

The "Cauchy problem" indicated in Theorem 3.1 is to be considered in two regions $r, s \ge 1$ and $0 \le r, s \le 1$. It can be transformed into two halfplane Cauchy problems $\eta \ge 0$ and $\eta \le 0$ respectively by setting $\eta = \log r$ and $\xi = \log s$, from which standard uniqueness results can be transported; the "data" is given on $-\infty < \xi < \infty$.

Theorem 3.2. Let \tilde{Q} and \tilde{Q}_1 be based on $\Delta_{Q} = x^{n-1}$ as above and let A and C be linear operators commuting with \tilde{Q}_1 . Let φ be the unique solution of $\tilde{Q}_r \varphi = \tilde{Q}_s^1 \varphi$ ($\tilde{Q}^1 \sim \tilde{Q}_1$), $\varphi(\mathbf{1}, s) = Af(s)$, and $D_r \varphi(\mathbf{1}, s) = Cf(s)$. Then $Bf(r) = \varphi(r, 1)$ determines a transmutation $B: \tilde{Q}_1 \to \tilde{Q}$.

Remark 3.3. In this spirit one can formally construct B and B

R. CARROLL

via Cauchy type problems as follows (n=3). Let $U_1(t,s)$ have the form (3.1) with (ρ, g, \mathfrak{G}) replaced by $(\rho^{i}, g_{1}, \mathfrak{G}_{1})$ etc. Set $\varphi(r, s) = \langle \beta(r, t), U_1(t, s) \rangle$ and $\tilde{\varphi}(r, s) = \langle \tilde{\beta}(r, t), U_1(t, s) \rangle$ so that $\varphi(r, 1) = Bf(r)$ and $\tilde{\varphi}(r, 1) = \tilde{B}f(r)$. For suitable f we obtain e.g. $\tilde{\varphi}(1, s) = \tilde{A}f(s) = \langle f(\sigma), \mathfrak{A}(s, \sigma) \rangle, D_r \tilde{\varphi}(1, s) = \tilde{C}f(s) = \langle f(\sigma), \mathfrak{C}(s, \sigma) \rangle$, where formally $\mathfrak{A}(s, \sigma) = \langle \alpha(\nu, k) g_1(\nu, -k, s), g_1(\nu, -k, \sigma) \rangle_{\rho^1}$ and $\mathfrak{C}(s, \sigma) = \langle \gamma(\nu, k) g_1(\nu, -k, s), g_1(\nu, -k, 1)/g_1(\nu, -k, 1)$ and $\gamma(\nu, k) = Dg(\nu, -k, 1)/g_1(\nu, -k, 1)$. Similar formulas apply for $\varphi(1, s)$ and $D_r \varphi(1, s)$ with ρ^1 replaced by ρ in the corresponding $\mathfrak{A}(s, \sigma)$ and $\mathfrak{C}(s, \sigma)$.

By modifying some techniques in [4] one shows (cf. also [3])

Theorem 3.4. For suitable f, h and T_s^r defined as in Theorem 3.1 there results $\langle T_s^r f(s), h(s) \rangle = \langle f(s), T_s^r h(s) \rangle$ and setting $(f*h)(r) = \langle T_s^r f(s), h(s) \rangle$ it follows that $(f*h)^* = \hat{fh}/g(\nu, -k, 1)$.

Remark 3.5. Following [4] it is possible to develop various Gelfand-Levitan (G-L) equations. For example based on the equations $g(\nu, -k, r) = \langle \tilde{\beta}(r, s), g_1(\nu, -k, s) \rangle$ and $g_1(\nu, -k, t) = \langle \beta(u, t), g(\nu, -k, u) \rangle$ a G-L equation arises in the form $\beta(r, t) = \langle \tilde{\beta}(r, s), A(s, t) \rangle$ where $A(s, t) = \langle g_1(\nu, -k, s), g_1(\nu, -k, t) \rangle_{\rho}$.

References

- A. Bottino, A. Longoni, and T. Regge: Potential scattering for complex energy and angular momentum. Nuovo Cimento, 23, 954-1004 (1962).
- [2] G. Burdet, M. Giffon, and E. Predazzi: On the inversion problem in the *l* plane. ibid., 36, 1337-1347 (1965).
- [3] R. Carroll: Transmutation and Operator Differential Equations. North-Holland, Amsterdam (1979).
- [4] ——: Transmutation, Scattering Theory, and Special Functions. North-Holland, Amsterdam (1982).
- [5] —: The Bergman-Gilbert operator as a transmutation. CR Royal Soc. Canada, 4, no. 5 (1982).
- [6] K. Chadan and P. Sabatier: Inverse Problems in Quantum Scattering Theory. Springer, N.Y. (1977).
- [7] D. Colton and R. Kress: The construction of solutions to acoustic scattering problems in a spherically stratified medium, I and II. Quart. Jour. Mech. Appl. Math., 31, 9-17 (1978); 32, 53-62 (1979).
- [8] D. Colton and W. Wendland: Constructive methods for solving the exterior Neumann problem for the reduced wave equation in a spherically symmetric medium. Proc. Roy. Soc. Edinburgh, 75A, 97-107 (1975/76).
- [9] C. Coudray and M. Coz: Generalized translation operators and the construction of potentials at fixed energy. Annals Physics, 61, 488-529 (1970).
- [10] D. Jones: The Kontorovič-Lebedev transform. Jour. Inst. Math. Appl., 26, 133-141 (1980).
- [11] J. Loeffel: On an inverse problem in potential scattering theory. Ann. Inst. H. Poincaré, 8, 339-447 (1968).
- [12] R. Newton: The Complex J Plane. Benjamin, N.Y. (1964).