16. Transmutation Theory for Certain Radial Operators

By Robert Carroll
University of Illinois
(Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1983)

1. Introduction. For $Q_{0} u=\left(\Delta_{Q} u^{\prime}\right)^{\prime} / \Delta_{Q}$ based on a radial LaplaceBeltrami operator we studied general transmutation theory for operators $\hat{Q} u=Q_{0} u+\hat{q}(x) u$ in [4] using various solutions of $\hat{Q} u=-k^{2} u$ as important ingredients. In the present work we consider operators $\tilde{Q} u=x^{2} Q_{0} u+x^{2}\left\{k^{2}-\tilde{q}(x)\right\} u$ (with corresponding eigenfunction equations $\left.\widetilde{Q} u=\lambda^{2} u\right)$ and will concentrate on the case $\Delta_{Q}=x^{2}$ which arises in various scattering problems (cf. [1], [2], [6]-[9], [11], [12]) so a certain amount of guideline information is available (cf. also [5]-B transmutes P into $Q, B: P \rightarrow Q$, if $Q B f=B P f$ for suitable f). We show here that with suitable modifications most of the constructions and techniques of the \hat{Q} theory have a version in the \tilde{Q} theory and we describe some of the basic transmutations and connection formulas.
2. Basic constructions. We take $\Delta_{Q}=x^{2}$ and set $\varphi=x u$ so $\tilde{Q} u$ $=\lambda^{2} u$ is

$$
\begin{equation*}
x^{2} \varphi^{\prime \prime}+x^{2}\left\{k^{2}-\tilde{q}(x)\right\} \varphi=\lambda^{2} \varphi \tag{2.1}
\end{equation*}
$$

(\tilde{q} real) and one writes $\lambda^{2}=\sigma(\sigma+1)=\nu^{2}-1 / 4$ (so $\sigma \sim l=$ angular momentum and $\nu \sim l+1 / 2$). We denote by $\varphi(\nu, k, x)$ the "regular solution" of (2.1) ($\varphi \sim x^{\nu+1 / 2}$ as $x \rightarrow 0$) and by $f(\nu, \pm k, x)$ the "Jost solutions" (e.g. $f(\nu,-k, x) \sim e^{i k x}$ as $\left.x \rightarrow \infty\right)$ with the "Jost function" $f(\nu,-k)=W(f(\nu$, $-k, x), \varphi(\nu, k, x))\left(W(f, g)=f g^{\prime}-f^{\prime} g\right)$. Assume e.g. $\int_{0}^{\infty} x|\widetilde{q}| d x<\infty$ and $\int_{0}^{\infty} x^{2}|\tilde{q}| d x<\infty$ as in [2] but we do not emphasize hypotheses on \tilde{q} (cf. [1], [6], [9], [11], [12]) ; we want mainly $\varphi \sim \varphi_{0}$ and $f \sim f_{0}$ as e.g. $|\nu| \rightarrow \infty$, $\operatorname{Re} \nu>0$, where (corresponding to $\tilde{q}=0$)

$$
\begin{align*}
& \varphi_{0}(\nu, k, x)=2^{\nu} \Gamma(\nu+1) k^{-\nu} x^{1 / 2} J_{\nu}(k x) ; \tag{2.2}\\
& f_{0}=((1 / 2) \pi k x)^{1 / 2} e^{(1 / 2) i \pi(\nu+1 / 2)} H_{\nu}^{1}(k x) ;
\end{align*}
$$

($f_{0}=f_{0}(\nu,-k, x)$) and

$$
f_{0}(\nu,-k)=2^{\nu}(2 / \pi)^{1 / 2} \Gamma(\nu+1) k^{-\nu+1 / 2} \exp \{(1 / 2) i \pi(\nu-1 / 2)\} .
$$

We think of k as fixed here and one knows then that $f(\nu,-k, x)$ is entire in ν while $\varphi(\nu, k, x)$ and $f(\nu,-k)$ are analytic for $\operatorname{Re} \nu>0$ (the range of analyticity can be enlarged with suitable hypotheses on \tilde{q}). We follow formally now the procedure in [2] with some refinements and elaboration. Thus set $g(\nu,-k, r)=f(\nu,-k, r) / r$ and let Z denote the zeros ν_{j} (if any) of $f(\nu,-k)$ in $\operatorname{Re} \nu>0$ with

$$
M^{2}\left(\nu_{j}, k\right)=\int_{0}^{\infty} g^{2}\left(\nu_{j},-k, r\right) d r
$$

Such ν_{j} are simple zeros and one sets $d \rho(\nu)=\sum \delta\left(\nu-\nu_{j}\right) / M^{2}\left(\nu_{j}, k\right)$ for $\nu \in Z$ with $d \rho(\nu)=2 i \nu^{2} d \nu / \pi f(\nu,-k) f(-\nu,-k)$ for $\nu \in[0, i \infty)$. From [2] one has the formal completeness relation

$$
\delta(r-s)=\langle g(\nu,-k, r), g(\nu,-k, s)\rangle_{\rho} \sim \int g(\nu,-k, r) g(\nu,-k, s) d \rho(\nu)
$$

and we show then $\left(g_{1}, \rho^{1}\right.$, etc. refer to an operator \tilde{Q}_{1} based on potential \tilde{q}_{1}).

Theorem 2.1. Define $\beta(r, s)=\left\langle g(\nu,-k, r), g_{1}(\nu,-k, s)\right\rangle_{\rho}$ and $\tilde{\beta}(r, s)$ $=\left\langle g(\nu,-k, r), \quad g_{1}(\nu,-k, s)\right\rangle_{\rho 1}$ with $\widetilde{\mathcal{B}} f(s)=\langle\beta(r, s), f(r)\rangle$ and $\tilde{B} f(r)$ $=\langle\tilde{\beta}(r, s), f(s)\rangle$ for suitable f. The r and s brackets refer to distribution pairings on $[0, \infty)$ and one has triangularity $\beta(r, s)=0$ for $s>r$ with $\tilde{\beta}(r, s)=0$ for $r>s$. Set $\oiint f f(\nu)=\hat{f}(\nu)=\int_{0}^{\infty} f(s) g(\nu,-k, s) d s$ so that formally $G \hat{f}(r)=\left(S^{-1} \hat{f}(r)=f(r)=\langle\hat{f}(\nu), g(\nu,-k, r)\rangle_{\rho}\right.$. Then $\tilde{B}: \tilde{Q}_{1} \rightarrow \tilde{Q}$ and $\widetilde{\mathcal{B}}\left(\sim \tilde{B}^{-1}\right): \widetilde{Q} \rightarrow \tilde{Q}_{1}$ are transmutations with $\widetilde{\mathcal{B}}\{g(\nu,-k, \cdot)\}(r)$ $=g_{1}(\nu,-k, r)$ and $\tilde{B}\left\{g_{1}(\nu,-k, \cdot)\right\}(r)=g(\nu,-k, r) . \quad$ Set $B=\widetilde{\mathcal{B}}^{*}$ (so $B f(r)$ $=\langle\beta(r, s), f(s)\rangle)$ and correspondingly $\mathscr{B}=\tilde{B}^{*}$; then ஞ $B f=\mathscr{G}_{1} f$ and ஞ্f $=\mathscr{G}_{1} \mathscr{B} f$ (with $\mathcal{B}=B^{-1}$).

We indicate next a connection to an exterior transmutation developed in [7], [8]. Thus for Q_{0} based on $\Delta_{Q}=x^{n-1}$ one considers \tilde{Q} $=x^{2} Q_{0}+x^{2}\left\{k^{2}-\tilde{q}(x)\right\}$ and $\tilde{P}=x^{2} Q_{0}+x^{2} k^{2}$. For suitable \tilde{q} a kernel $K(r, s)$ is constructed in [7], [8] (by successive approximations) such that the formula

$$
\begin{equation*}
u(r, \cdot)=\left\{B_{e} h\right\}(r, \cdot)=h(r, \cdot)+\int_{r}^{\infty} s^{n-3} K(r, s) h(s, \cdot) d s \tag{2.3}
\end{equation*}
$$

links suitable solutions h of $\left(\Delta_{n}+k^{2}\right) h=0$ to corresponding solutions u of $\left\{\Delta_{n}+\left(k^{2}-\tilde{q}(r)\right)\right\} u=0$. The kernel $K(r, s)$ satisfies $\tilde{Q}_{r} K=\tilde{P}_{s} K$ for $s>r$ with $2 r^{n-2} K(r, r)=\int_{r}^{\infty} s \tilde{q}(s) d s$. If we write $\check{K}(r, s)=K(r, s) Y(s-r)(Y$ the Heaviside function) then one can show

Theorem 2.2. For suitable \tilde{q} the $\operatorname{map} B_{e} f(r)=f(r)+\langle\check{K}(r, s), f(s)\rangle$ is a transmutation $\tilde{P} \rightarrow \tilde{Q}$ and for $n=3, \quad \delta(s-r)+\check{K}(r, s) \sim \tilde{\beta}(r, s)$ $=\left\langle g(\nu,-k, r), g_{1}(\nu,-k, s)\right\rangle_{\rho_{1}}\left(\right.$ where $\tilde{Q}_{1} \sim \tilde{P}$ and ρ^{1} is the "free" measure indicated below).

Example 2.3. We denote by "free" the case where $\tilde{q}=0$ so that (2.2) holds. In this event $f(\nu,-k)$ has no zeros for $\operatorname{Re} \nu>0$ and $d \rho(\nu)$ $=-(\nu / \pi k) \sin \pi \nu d \nu$ is the "free" measure. The inversion theory for (3) is the Kontorovič-Lebedev theory which can be treated in various forms (cf. [10]). The version which we obtain below (cf. (2.5)) specializes for $\tilde{q}=0$ to

$$
\begin{equation*}
\tilde{G}(\nu)=\int_{0}^{\infty} G(s) H_{\nu}^{1}(k s) d s ; \quad r G(r)=\frac{1}{2} \int_{-i \infty}^{i \infty} \nu \tilde{G}(\nu) J_{\nu}(k r) d \nu \tag{2.4}
\end{equation*}
$$

In order to arrive at a general form of (2.4) we suppose $f(\nu,-k)$ has no zeros for $\operatorname{Re} \nu>0$ so that $d \rho(\nu)=\hat{\rho}(\nu) d \nu$. From properties of $f(\pm \nu,-k, x)$ and $\varphi(\pm \nu, k, x)$ one has

$$
r f(r)=\langle\hat{f}(\nu), f(\nu,-k, r)\rangle_{\rho}=\frac{1}{2} \int_{-i \infty}^{i \infty} \hat{f}(\nu) f(\nu,-k, r) \hat{\rho}(\nu) d \nu
$$

and from this

$$
\begin{equation*}
r f(r)=-(i / \pi) \int_{-i \infty}^{i \infty} \nu \hat{f}(\nu) \Phi(\nu, k, r) d \nu \tag{2.5}
\end{equation*}
$$

where $\Phi(\nu, k, r)=\varphi(\nu, k, r) / f(\nu,-k)$ (cf. [4]) and using the formal relation (*) $-(i \mu / \pi) \int_{0}^{\infty} \Phi(\mu, k, s) g(\nu,-k, s) d s / s=\delta(\mu-\nu)$ arising from (2.5) we show

Theorem 2.4. Given absolutely continuous $d \rho(\nu)=\hat{\rho}(\nu) d \nu$ the inversion (2.5) holds. If \tilde{Q} and \tilde{Q}_{1} both have continuous spectrum then B is characterized by $B\left\{g_{1}(\nu,-k, \cdot)\right\}(r)=\left(\hat{\rho} / \hat{\rho}_{1}\right)(\nu) g(\nu,-k, r)$ and in addition

$$
\begin{equation*}
B\left\{\Phi_{1}(\nu, k, s) / s\right\}(r)=\left\langle\beta(r, s), \Phi_{1}(\nu, k, s) / s\right\rangle=\Phi(\nu, k, r) / r . \tag{2.6}
\end{equation*}
$$

One can construct a formal proof of (2.6) following [4] (using analytic continuation) but a simpler formal verification can be obtained by looking at $\langle\beta(r, s), g(\nu,-k, r)\rangle=g_{1}(\nu,-k, s)$ as an extension of © to β, so that $\hat{\beta}(\nu, s)=g_{1}(\nu,-k, s)$, using the inversion (2.5), and then applying (*) for Φ_{1} and g_{1}.
3. General techniques. First, assuming $g(\nu,-k, 1)=0$ on the spectrum,

$$
\begin{equation*}
U(r, s)=\langle\hat{f}(\nu) / g(\nu,-k, 1), g(\nu,-k, r) g(\nu,-k, s)\rangle_{\rho} \tag{3.1}
\end{equation*}
$$

where $\hat{f}(\nu)=\bowtie(f(\nu)$ makes sense formally and using the idea of generalized translation developed by Hutson-Pym (cf. [3], [4]) one has for suitable \tilde{q}

Theorem 3.1. $U(r, s)=T_{s}^{r} f(s)$ represents a generalized translation for \widetilde{Q} determined by $\tilde{Q}_{r} U=\widetilde{Q}_{s} U, U(1, s)=f(s)$, and $D_{r} U(1, s)=C f(s)$ $=\langle\Gamma(s, \eta), f(\eta)\rangle$ where

$$
\Gamma_{\sim}(s, \eta)=\langle g(\nu,-k, s) g(\nu,-k, \eta), D g(\nu,-k, 1) / g(\nu,-k, 1)\rangle_{\rho}
$$

($\widetilde{Q} C=C \tilde{Q}$ and $C f(1)=f^{\prime}(1)$).
The "Cauchy problem" indicated in Theorem 3.1 is to be considered in two regions $r, s \geq 1$ and $0 \leq r, s \leq 1$. It can be transformed into two halfplane Cauchy problems $\eta \geq 0$ and $\eta \leq 0$ respectively by setting $\eta=\log r$ and $\xi=\log s$, from which standard uniqueness results can be transported; the "data" is given on $-\infty<\xi<\infty$.

Theorem 3.2. Let \tilde{Q} and \tilde{Q}_{1} be based on $\Delta_{Q}=x^{n-1}$ as above and let A and C be linear operators commuting with \dot{Q}_{1}. Let φ be the unique solution of $\tilde{Q}_{r} \varphi=\widetilde{Q}_{s}^{1} \varphi\left(\widetilde{Q}^{1} \sim \tilde{Q}_{1}\right), \varphi(1, s)=A f(s)$, and $D_{r} \varphi(1, s)=C f(s)$. Then $B f(r)=\varphi(r, 1)$ determines a transmutation $B: \widetilde{Q}_{1} \rightarrow \widetilde{Q}$.

Remark 3.3. In this spirit one can formally construct B and \check{B}
via Cauchy type problems as follows ($n=3$). Let $U_{1}(t, s)$ have the form (3.1) with (ρ, g, (5) replaced by ($\rho^{1}, g_{1}, \mathscr{G}_{1}$) etc. Set $\varphi(r, s)$ $=\left\langle\beta(r, t), U_{1}(t, s)\right\rangle$ and $\tilde{\varphi}(r, s)=\left\langle\tilde{\beta}(r, t), U_{1}(t, s)\right\rangle$ so that $\varphi(r, 1)=\underset{\sim}{B} f(r)$ and $\tilde{\varphi}(r, 1)=\tilde{B} f(r)$. For suitable f we obtain e.g. $\tilde{\varphi}(1, s)=\tilde{A} f(s)$ $=\langle f(\sigma), \tilde{\mathfrak{A}}(s, \sigma)\rangle, D_{r} \tilde{\varphi}(1, s)=\tilde{C} f(s)=\langle f(\sigma), \tilde{C}(s, \sigma)\rangle$, where formally $\tilde{\mathfrak{A}}(s, \sigma)$ $=\left\langle\alpha(\nu, k) g_{1}(\nu,-k, s), g_{1}(\nu,-k, \sigma)\right\rangle_{\rho^{1}} \quad$ and $\tilde{C}(s, \sigma)=\left\langle\gamma(\nu, k) g_{1}(\nu,-k, s)\right.$, $\left.g_{1}(\nu,-k, \sigma)\right\rangle_{\rho^{1}}\left(\alpha(\nu, k)=g(\nu,-k, 1) / g_{1}(\nu,-k, 1)\right.$ and $\gamma(\nu, k)=D g(\nu,-k, 1) /$ $g_{1}(\nu,-k, 1)$). Similar formulas apply for $\varphi(1, s)$ and $D_{r} \varphi(1, s)$ with ρ^{1} replaced by ρ in the corresponding $\mathfrak{A}(s, \sigma)$ and $\mathfrak{G}(s, \sigma)$.

By modifying some techniques in [4] one shows (cf. also [3])
Theorem 3.4. For suitable f, h and T_{s}^{r} defined as in Theorem 3.1 there results $\left\langle T_{s}^{r} f(s), h(s)\right\rangle=\left\langle f(s), T_{s}^{r} h(s)\right\rangle$ and setting $(f * h)(r)$ $=\left\langle T_{s}^{r} f(s), h(s)\right\rangle$ it follows that $(f * h)^{\wedge}=\hat{f} \hat{h} / g(\nu,-k, 1)$.

Remark 3.5. Following [4] it is possible to develop various Gelfand-Levitan (G-L) equations. For example based on the equations $g(\nu,-k, r)=\left\langle\tilde{\beta}(r, s), g_{1}(\nu,-k, s)\right\rangle$ and $g_{1}(\nu,-k, t)=\langle\beta(u, t), g(\nu,-k, u)\rangle$ a G-L equation arises in the form $\beta(r, t)=\langle\tilde{\beta}(r, s), A(s, t)\rangle$ where $A(s, t)$ $=\left\langle g_{1}(\nu,-k, s), g_{1}(\nu,-k, t)\right\rangle_{\rho}$.

References

[1] A. Bottino, A. Longoni, and T. Regge: Potential scattering for complex energy and angular momentum. Nuovo Cimento, 23, 954-1004 (1962).
[2] G. Burdet, M. Giffon, and E. Predazzi: On the inversion problem in the λ plane. ibid., 36, 1337-1347 (1965).
[3] R. Carroll: Transmutation and Operator Differential Equations. NorthHolland, Amsterdam (1979).
[4] --: Transmutation, Scattering Theory, and Special Functions. NorthHolland, Amsterdam (1982).
[5] -: The Bergman-Gilbert operator as a transmutation. CR Royal Soc. Canada, 4, no. 5 (1982).
[6] K. Chadan and P. Sabatier: Inverse Problems in Quantum Scattering Theory. Springer, N.Y. (1977).
[7] D. Colton and R. Kress: The construction of solutions to acoustic scattering problems in a spherically stratified medium, I and II. Quart. Jour. Mech. Appl. Math., 31, 9-17 (1978) ; 32, 53-62 (1979).
[8] D. Colton and W. Wendland: Constructive methods for solving the exterior Neumann problem for the reduced wave equation in a spherically symmetric medium. Proc. Roy. Soc. Edinburgh, 75A, 97-107 (1975/76).
[9] C. Coudray and M. Coz: Generalized translation operators and the construction of potentials at fixed energy. Annals Physics, 61, 488-529 (1970).
[10] D. Jones: The Kontorovič-Lebedev transform. Jour. Inst. Math. Appl., 26, 133-141 (1980).
[11] J. Loeffel: On an inverse problem in potential scattering theory. Ann. Inst. H. Poincaré, 8, 339-447 (1968).
[12] R. Newton: The Complex J Plane. Benjamin, N.Y. (1964).

