On an Elaboration of M. Kac's Theorem Concerning Eigenvalues of −4 in a Region with Randomly Distributed Small Obstacles

By Shin OZAWA

Department of Mathematics, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., Jan. 12, 1983)

Let Ω be a bounded domain in \mathbb{R}^{3} with smooth boundary γ . Let $0 \leq \mu_{1}(\varepsilon; w(m)) \leq \mu_{2}(\varepsilon; w(m)) \leq \cdots$ be the eigenvalues of $-\Delta(=-\operatorname{div} \operatorname{grad})$ in $\Omega_{\varepsilon,w(m)} = \Omega \setminus \bigcup_{i=1}^{m} B(\varepsilon; w_{i}^{(m)})$ under the Dirichlet condition on its boundary. We arrange them repeatedly according to their multiplicities. Here $B(\varepsilon; w) = \{x \in \mathbb{R}^{3}; |x-w| < \varepsilon\}$ and w(m) denotes the set of mpoints $\bigcup_{i=1}^{m} \{w_{i}^{(m)}\}$. Let V(x) be C^{1} function on $\overline{\Omega}$ satisfying $V(x) \geq 0$ and

$$\int_{\Omega} V(x) dx = 1.$$

We consider Ω as the probability space with probability density V(x)dx.

Kac's theorem is the following

Theorem (Kac [1], Rauch-Taylor [5]). Fix k and $\alpha > 0$. Then $\lim P(w(m) \in \Omega^m; |\mu_k(\alpha/m; w(m)) - \mu_k^v| < \varepsilon) = 1$

for any $\varepsilon > 0$. That is, $\mu_k(\alpha/m; w(m))$ tends to μ_k^v in probability. Here μ_k^v is the k-th eigenvalue of $-\Delta + 4\pi\alpha V(x)$ in Ω under the Dirichlet condition on γ .

In this note we give an elaboration of Kac's theorem. We have the following

Theorem 1. Fix k and $\alpha > 0$. Then $\lim_{m \to \infty} P(w(m) \in \Omega^m; |\mu_k(\alpha/m; w(m)) - \mu_k^v| < \varepsilon m^{-\beta}) = 1$

for any $\varepsilon > 0$ and any fixed $\beta \in [0, 1/4)$.

Remark. Kac [1] proved his result by using the theory of Wiener sausage in case $V(x) = (\text{volume of } \Omega)^{-1}$. After Kac [1], Rauch-Taylor [5] gave the result for general V(x) by combining functional analysis of operators and the Feynmann-Kac formula. See also Simon [6], Papanicolaou-Varadhan [4].

Our proof of Theorem 1 is quite different from [1], [5]. The main idea is to use perturbational calculus using Green's function of $-\Delta$. A direct construction of an approximate Green's function of $-\Delta$ in $\Omega_{a/m,w(m)}$ under the Dirichlet condition on $\partial\Omega_{a/m,w(m)}$ in terms of Green's function of $-\Delta$ in Ω under the Dirichlet condition on γ enables us to give a remainder estimate in Theorem 1. For the method using

Green's function the reader may refer to [3].

By the use of Green's function we get also the result on an asymptotic behaviour of μ_k (α/m ; w(m)) when w(m) is dispersed in a specific configuration (for example, lattice configuration) as $m \to \infty$. Both proofs of probabilistic result (Theorem 1) and deterministic result proceed in parallel.

A sequence w(m), $m=1, 2, \cdots$ is said to be of class \mathcal{F} if the following conditions (F-1), (F-2), (F-3) for w(m) are satisfied:

$$(\mathbf{F-1}), \qquad \qquad w_i^{(m)} \in \mathcal{Q}, \qquad \min_{i \neq j} |w_i^{(m)} - w_j^{(m)}| \ge C_0 m^{-1+1}$$

for some constant C_0 independent of m. Here ν is a fixed constant satisfying $0 \le \nu \le 1/3$.

(F-2) There exists a constant C_{ξ}^{*} independent of *m* (possibly depending on ξ) such that the following holds for any $\xi > 0$.

$$\max_{m} \frac{1}{m^{2}} \sum_{i,j=1 \atop i \neq j}^{m} |w_{i}^{(m)} - w_{j}^{(m)}|^{-3+\ell} \le C_{\ell}^{*} < \infty.$$

(F-3) Let f_h , $h=1, 2, 3, \cdots$ be an arbitrary fixed family of continuous functions on $\overline{\Omega}$ satisfying

$$\max_{x \in O} |f_h(x)| \leq C^{-h}$$

for some constant C>1. Fix an arbitrary $0 \le \delta \le 1/2$ and $\lambda \ge 0$. Then

(1)
$$\lim_{m\to\infty} m^{\delta} \left(\sup_{h} C^{h/2} \left(\frac{1}{m} \sum_{i=1}^{m} f_{h}(w_{i}^{(m)}) - f_{h}(x) V(x) dx \right) \right) = 0$$

and

$$(2) \qquad \lim_{m \to \infty} m^{\delta} \left(\sup_{h} C^{h/2} \left(\frac{1}{m} \sum_{i_{1}=1}^{m} \left\{ \frac{1}{m} \sum_{\substack{i_{2}\neq i_{1} \\ i_{2}=1}}^{m} G_{(\lambda)}(w_{i_{1}}^{(m)}, w_{i_{2}}^{(m)}) f_{h}(w_{i_{2}}^{(m)}) - (G_{(\lambda)}Vf_{h})(w_{i_{1}}^{(m)}) \right\}^{2} \right) = 0,$$

where $G_{(\lambda)}(x, y)$ denotes Green's function of $-\Delta + \lambda$ ($\lambda \ge 0$) in Ω under the Dirichlet condition on γ and $G(\lambda)$ denotes the integral operator given by

$$(\boldsymbol{G}(\boldsymbol{\lambda})f)(\boldsymbol{x}) = \int_{\boldsymbol{g}} G_{(\boldsymbol{\lambda})}(\boldsymbol{x}, \boldsymbol{y})f(\boldsymbol{y})d\boldsymbol{y}.$$

We have the following

Proposition 1. Fix k and $\alpha > 0$. Assume that $\{w(m)\}_{m=1}^{\infty} \in \mathcal{F}$. Then

$$\lim |\mu_k(\alpha/m; w(m)) - \mu_k^V| = 0(m^{-\delta/2})$$

holds for $\delta \in [0, 1/2)$.

We see that

$$\lim_{m\to\infty} \boldsymbol{P}(w(m)\in \mathcal{Q}^m;\min_{i\neq j}|w_i^{(m)}-w_j^{(m)}|\leq \tilde{C}_0m^{-1+\nu})=0$$

for any $\tilde{C}_0 \in \mathbf{R}$,

$$\lim P(w(m) \in \Omega^m; (F-2) \text{ does not hold}) = 0$$

and that the convergence in (1), (2) is the convergence in probability.

No. 1]

These facts are used and essential in the proof of Theorem 1.

The details of the proof of Theorem 1 and related results will be given in [2]. The author here expresses his cordial gratitude to Prof. G. C. Papanicolaou for valuable discussions and encouragement.

References

- M. Kac: Probabilistic methods in some problem of scattering theory. Rocky Mountain J. of Math., 4, 511-538 (1974).
- [2] S. Ozawa: On an elaboration of M. Kac's theorem of -4 in a region with randomly distributed small obstacles (preprint).
- [3] —: Eigenvalues of the Laplacian on wildly perturbed domain. Proc. Japan Acad., 58A, 419-421 (1982).
- [4] G. C. Papanicolaou and S. R. S. Varadhan: Diffusion in region with many small holes. Lecture Notes in Control and Information, 75, 190-206 (1980).
- [5] J. Rauch and M. Taylor: Potential and scattering theory on wildly perturbed domains. J. Funct. Analysis, 18, 27-59 (1975).
- [6] B. Simon: Functional Integration and Quantum Physics. Academic Press (1979).