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1. Statement of the formula (F). Let us begin with a well-
known ormula of the complete elliptic integral

(1.1) 2K def 2 ;:/ (1 1 )(1-- sin 8)-/2dO--2F --, - 1

where e C, [1 and F, is the Gauss’ hypergeometric series. If we
pass to the cartesian coordinates x=cos0, y=sin0 of the plane R,
then (1.1) becomes

(1.2)
z
(1--2y)-/d=F ,; 1;

where, in general, S- denotes the unit sphere of R with the center
at the origin and d is the volume element of S- such that the volume
of S- is 1. Notice here that y is a degenerate quadratic form on R.

In this note, we shall give a generalization of (1.2). Namely,
along with a partition n=p+q, p, qO, of an integer n, consider the
decomposition R=RR of the euclidean space R. When z=(x, y)
e R, x e R, y e R, we have Nz Nx+Ny, where Nx x+. +x,
etc. Let a, b be non-negative integers such that c=a+bO. Our
generalization of (1.2) is the following formula"

[ (1-2(Nx)(Ny))-dw=+F(s, ; fl(F)

where 2 e C, [1, s e C and

=( p+2 p+2(a--X) q q+2 q+2(b--1))’-2a ’" 2a ’’ ’’’" 2b

fl=(,..n+2 n+2(c--1))2c 2c

Needless to say, (1.2) is a special case of (F) where n=2, p=q=l, a=0,
b=c=l and s=l/2. We remind the reader the definition o the
(generalized) hypergeometric series which appears on the right hand
side of (F). First, for a e C, k e Z, k0, we put, ollowing Appell,

(a, k)= {a(a+ 1).. (a+k- 1), k O,
1, k=0.

Next, for integers Z, " 0, consider vectors a (a, ..., a,) e C", fl
=(, ..., ) e C. The hypergeometric series ,F(a; fl z), z e C, is
then defined by
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(2.2)

.and

(, k)...(,, k)z,F(. z)= --=o -( k) (fl, k)k
2. Proof o the formula (t). Since both sides of (F) are holo-

morphic for 2 e C, 1141, we may assume that e R, ]2]1. Let us put
(2.1) g(z) 1 2(Nx)a(Ny)b, z (x, y) e R RPRq,

0(t)=s_ e-(d’ t>0,

Since g(z)O on.S-, it is easy to see that (s) is holomorphic or
:Re(s)0 as in the case of the Euler integral or the gamma unction.
We shall look at (s) in two ways. First, by the change o variabte
u= tg(z), we have

,(2.4) (s) F(s) [ g(z)-d
JSn-

where the integral represents an entire unction o s since g(z) on
S-. Next, we start with

(2.5) (s)=I: t-’e-dt

For the moment, we shall assume the ollowing equality

(2.6) [ eU()()d=F( fl abc-u), u e C,
J

proof o which will be given soon. Substituting (2.6) in (2.5) with
u=2t and using Mellin’s ormula or hypergeometric series,) we get

(2.7) (s)=[ t’-e- F(a fl abc-t)dt

F(s)+F(s, ; fl; abc-2).
Then, our formula (F) ollows rom (2.4) and (2.7) on eliminating F(s).
We now concentrate on proving (2.6). Since Nz=Nx
we have

[ u f (Nx)(X_Nx)d(2.8) I
clef

(-b, ) (Nz) d.

As =(1,..., 1, 0,..., 0) is the set of eigenvalues of the degenerate

quadratic form Nz on R, we have

(2.9)
s-

(Nz)*g
*(/2, a+)

where the numbers b.(2;) are determined by the generating
retation

1) See [1] p. 63, line 10 from the bottom.
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b,(2 )t,= l-[ (1-4t)-v=(1-4t)-/?)(2.10)
t=0 t=l

Therefore, we have

(2.11) b,(2; )-- (p/2,/z)4,.

From (2.9), (2.11), we get

o u (P/2’ ak) F’ ( bk’ p n(2.12) I=
k! (n/2, ak) - + ak + ak ;1

As is well-known, we have

(2.13) F(c,/3; ’; 1)= F(’)FO’--)
p(r cOP(r-)

when lie(r-a-g)>0 and r is not a non-positive integer?) Our
formula (2.6) follows at once form (2.12), (2.13) and the following
multiplication formula for Appell’s symbol

(o,mk)=m(-- k)(...a+ml k). (a+m--1 k)
3. Application of the formula (F) to deformations of Hopf

maps. Let 12 be an open se of R containing S- and f: t2R be a
continuous map. Assume further tha f(z):::O for all z S-. Then
we obtain an entire function of s C defined by

(3.1) K(f s)=f N(f(z))-’do.
dSn-x

If N(f(z)) happens to be of the form 1-a(Nx)(Ny) for a suitable
decomposition R=RR and integers a, b as in 1, then, by the
ormula (F), K(f;s) may be expressed as a hypergeometric series.
This is the case of the deformation of Hopf maps. Namely, suppose
that there is a bilinear map B: R Rq--+R such that

N(B(x, y))=NxNy, x e Rp, y e R.
For e R such that [a[<1/4, put
(3.2) f(z)=(Nx--Ny, 2(1--2)VB(x, y)).
Then, we have
(3.3) N(f(z)) 1-42(Nx)(Ny).
For =0, fo is a Hopf map. With a=b=l, c=2, we get from the
formula (F)

( -;--’q n n+2)4(3.4) K(f s)=rz s, ,
If, in particular, p=q=r=n/2, then, by a theorem of Hurwitz,

only 4 cases" 79=1, 2, 4, 8, are possible. These cases are materialized
by the classical Hopf fibration S-S, SS, SS and SS.

2) See 1, 3 of [3].
3) See [2] p. 49, Th. 18.
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Since q-n/2, the. series F. in (3.4) degenerates to the Gauss’ series

(3.5) K(f s) 2F1 s, -If we use the Euler integral representation of Gauss’ series, we
obtain

2ivF-(p2-) sin-t(1- 2 sin 0)-d.

If, in particular, p=l and s=1/2, then f are deformations of the
double covering SS given by the squaring zz, z e C, and (3.6)
boils down to the complete elliptic integral (2/)K in (1.1).
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4) When s is a negative integer, the formula (3.5) was obtained by a differ-
ent method in [4].


