134. An Explicit Estimate of Sojourning Time by Intermittency with Elementary Method

By Jun KIGAMI

Department of Mathematics, Kyoto University

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1983)

1. Introduction. First we consider iterations of a family of maps \tilde{f}_{μ} defined by $\tilde{f}_{\mu} = \mu + x - x^2$. If $\mu < 0$, there are no fixed points. As $\mu \uparrow 0$, the orbit of iteration by \tilde{f}_{μ} more and more sojourns around 0. Finally at $\mu = 0$, 0 becomes a fixed point. If $\mu > 0$, there are two fixed points where the positive one is stable and the negative one is not.

Pomeau and Manneville [1], [2] studied such bifurcation in connection with an intermittent transition to turbulence in Lorenz equation. They call the motion near 0 "laminar phase" and the motion out of 0 "burst".

A general form of 1-parameter family which bifurcate as \tilde{f}_{μ} above is given by Guckenheimer [3]. That is,

 $F(\mu, x)$ is C^3 function of both μ and x,

(1.1)
(1)
$$F(\mu_0, x_0) = x_0$$
 (2) $\frac{\partial F}{\partial x}(\mu_0, x_0) = 1$
(3) $\frac{\partial^2 F}{\partial x^2}(\mu_0, x_0) > 0$ (4) $\frac{\partial F}{\partial \mu}(\mu_0, x_0) > 0.$

By a conjugate transformation using an affine map and reparametrization we can transform (1.1) into the following form:

(1.2) $F(\mu, x) = \mu + x - x^2 + \mu x f(\mu, x) + x^3 g(x)$

here $f(\mu, x)$ and g(x) are continuous at the origin.

Further we introduce a noise in 1-dimensional dynamical system given by (1.2) which is different from [4] as

(1.3) $X_{n+1} = F(\mu, X_n) + |\mu|^{1+\theta} \cdot \xi_n$

here $\theta > 0$ and ξ_n is bounded random variable.

We are interested in getting the order of increase of the duration in "laminar phase" by (1.3) as $\mu \uparrow 0$.

2. Definition and main result. Definition. Let $\delta > 0$ and $F(\mu, x)$ be given by (1.2). We say δ is suitable if there exists $\mu_0 < 0$ such that $F(\mu, x) < x$ for $(\mu, x) \in [\mu_0, 0] \times [-\delta, \delta] - \{(0, 0)\}$.

Remark. By the definition of $F(\mu, x)$, δ which is sufficiently near 0 is suitable.

Definition. Let $\delta > 0$ be suitable and consider a sequence

(2.1) $x_0 = \delta$, $x_{n+1} = F(\mu, x_n) + |\mu|^{1+\theta} \cdot \xi_n$ here $\theta > 0$ and there exists C > 0 such that $|\xi_n| < C$ for all n. We define sojourning time in $[-\delta, \delta]$ denoted by $T_{\delta}(\mu)$ as

$$T_{\delta}(\mu) = \min\{n: x_n < -\delta\}.$$

(2.2) Main theorem. Let δ be suitable, then we have $\lim_{\mu \uparrow 0} \sqrt{-\mu} \cdot T_{\delta}(\mu) = \pi.$

3. Proof of the main theorem. Let $\eta = \sqrt{-\mu}$ and we use $T_{\delta}(\eta)$ in place of $T_{\delta}(-\eta^2)$.

Lemma 1. Let

(3.1)
$$\alpha > 0, \qquad R(\alpha, \eta, x) = \frac{x - \alpha \eta^2}{1 + \alpha x},$$

(3.2)
$$x_{0}=\delta, \ x_{n+1}=R(\alpha, \eta, x_{n}) \ and \ S_{\delta}(\alpha, \eta)=\min\{n: x_{n}<-\delta\}. \quad Then,$$
$$S_{\delta}(\alpha, \eta)=\left[\frac{2\cdot \operatorname{Tan}^{-1}(\delta/\eta)}{\operatorname{Tan}^{-1}(\alpha\eta)}\right]+1.$$

Proof of Lemma 1. $R(\alpha, \eta, x)$ is projection of a rotation around $(0, -\eta)$ with angle Tan⁻¹ $(\alpha\eta)$ to x-axis. Consequently $R(\alpha, \eta, x)$ is conjugate to y-Tan⁻¹ $(\alpha\eta)$ by $y=\text{Tan}^{-1}(x/\eta)$ and then $[-\delta, \delta]$ is mapped bijectively to $[-\text{Tan}^{-1}(\delta/\eta), \text{Tan}^{-1}(\delta/\eta)]$. Therefore we have (3.2).

Lemma 2. Let $0 < \varepsilon < 1$, then there exists $\Delta > 0$ such that for all $\delta \in (0, \Delta)$

(3.3)
$$\pi(1-\varepsilon) \leq \lim_{\eta \downarrow 0} \eta \cdot T_{\delta}(\eta) \leq \lim_{\eta \downarrow 0} \eta \cdot T_{\delta}(\eta) \leq \pi(1+\varepsilon).$$

Proof of Lemma 2. Let

$$h(x,\eta) = \frac{\eta^2 x \cdot f(-\eta^2, x) - x^3 g(x)}{\eta^2 + x^2}$$

then h(0,0)=0 and $h(x,\eta)$ is continuous at (0,0). From (1.2) and (3.1), $R\left(\frac{1}{1+\varepsilon},\eta,x\right) - F(-\eta^2,x) = (x^2+\eta^2)\left(\frac{\varepsilon+x}{1+\varepsilon+x} + h(x,\eta)\right)$ $R\left(\frac{1}{1-\varepsilon},\eta,x\right) - F(-\eta^2,x) = (x^2+\eta^2)\left(\frac{-\varepsilon+x}{1-\varepsilon+x} + h(x,\eta)\right).$

As $\varepsilon/(1+\varepsilon)>0$, $-\varepsilon/(1-\varepsilon)<0$ and $x^2+\eta^2\geq 0$, there exist Δ , $\eta_*>0$ such that

(3.4)
$$R\left(\frac{1}{1-\varepsilon},\eta,x\right) \leq F(-\eta^2,x) \leq R\left(\frac{1}{1+\varepsilon},\eta,x\right)$$

for any $(\eta, x) \in [-\eta_*, \eta_*] \times [-\Delta, \Delta]$. Now $|\xi_n|$ is bounded, hence for sufficiently large A > 0 we have

(3.5)
$$-\frac{A|\eta|^{2+2\theta}}{1-\varepsilon+x} < \eta^{2+2\theta} \cdot \xi_n < \frac{A|\eta|^{2+2\theta}}{1+\varepsilon+x}$$

for $x \in [-\Delta, \Delta]$. Then by (3.4) and (3.5) we have

$$(3.6) \qquad R\left(\frac{1}{1-\varepsilon},\eta_2,x\right) < \eta^{2+2\theta} \cdot \xi_n + F(-\eta^2,x) < R\left(\frac{1}{1+\varepsilon},\eta_1,x\right)$$

here $\eta_1 = \eta \sqrt{1 + A \eta^{2\theta}}$ and $\eta_2 = \eta \sqrt{1 - A \eta^{2\theta}}$. In (3.6) the left-hand side

460

No. 10]

decreases faster than F in $[-\Delta, \Delta]$ and the right-hand side decreases slower than F in $[-\Delta, \Delta]$. Therefore for any $\delta \in (0, \Delta)$ we have

$$S_{\delta}\!\!\left(\!rac{1}{1\!-\!arepsilon},\eta_{\scriptscriptstyle 2}
ight)\!\!\leq\! T_{\delta}(\eta)\!\leq\! S_{\delta}\!\!\left(\!rac{1}{1\!+\!arepsilon},\eta_{\scriptscriptstyle 1}
ight)\!.$$

Both sides are given by (3.2) and we have (3.3) through elementary calculation.

Proof of the main theorem. Let δ be suitable and $0 < \delta' < \delta$, then by definition

$$\begin{split} M &= \min \left\{ |x - F(\mu, x) - |\mu|^{1+\theta} \cdot C| : (\mu, x) \in [\mu_*, 0] \times [\delta', \delta] \cup [-\delta, -\delta'] \right\} \\ \text{exists and is positive for some } \mu_*. \quad \text{Hence the sojourning time in} \\ [\delta', \delta] \text{ and in } [-\delta, -\delta'] \text{ are bounded by } (\delta - \delta')/M. \quad \text{Therefore we have} \\ T_{\delta}(\mu) - 2(\delta - \delta')/M \leq T_{\delta'}(\mu) \leq T_{\delta}(\mu). \end{split}$$

Hence we have

$$\lim_{\mu \downarrow 0} \sqrt{-\mu} \cdot T_{\delta'}(\mu) \leq \lim_{\mu \downarrow 0} \sqrt{-\mu} \cdot T_{\delta}(\mu) \leq \lim_{\mu \downarrow 0} \sqrt{-\mu} \cdot T_{\delta}(\mu) \leq \lim_{\mu \downarrow 0} \sqrt{-\mu} \cdot T_{\delta'}(\mu).$$

By Lemma 2, both sides are bounded by $\pi(1-\varepsilon)$ and $\pi(1+\varepsilon)$ respectively. Hence we have (2.2).

Remark. The key idea of the proof of our theorem is that $F(\mu, x)$ satisfying (1.2) is well approximated by $R(1, \sqrt{-\mu}, x) = (x+\mu)/(1+x)$ which is essentially a rotation around $(0, -\sqrt{-\mu})$.

At the end of this paper I would like to thank Prof. M. Yamaguti for his advice and encouragement.

References

- P. Manneville and Y. Pomeau: Different ways to turbulence in dissipative dynamical systems. Physica, 1D, 219-226 (1980).
- [2] Y. Pomeau and P. Manneville: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys., 74, 189-197 (1980).
- [3] J. Guckenheimer: On the bifurcation of maps of the interval. Invent. math., 39, 165-178 (1977).
- [4] J. P. Eckmann, L. Thomas, and P. Wittwer: Intermittency in the presence of noise. J. Phys., A: Math. Gen., 14, 3153-3168 (1981).