# 134. An Explicit Estimate of Sojourning Time by Intermittency with Elementary Method 

By Jun Kigami<br>Department of Mathematics, Kyoto University<br>(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1983)

1. Introduction. First we consider iterations of a family of maps $\tilde{f}_{\mu}$ defined by $\tilde{f}_{\mu}=\mu+x-x^{2}$. If $\mu<0$, there are no fixed points. As $\mu \uparrow 0$, the orbit of iteration by $\tilde{f}_{\mu}$ more and more sojourns around 0 . Finally at $\mu=0,0$ becomes a fixed point. If $\mu>0$, there are two fixed points where the positive one is stable and the negative one is not.

Pomeau and Manneville [1], [2] studied such bifurcation in connection with an intermittent transition to turbulence in Lorenz equation. They call the motion near 0 "laminar phase" and the motion out of 0 "burst".

A general form of 1-parameter family which bifurcate as $\tilde{f}_{\mu}$ above is given by Guckenheimer [3]. That is,
$F(\mu, x)$ is $C^{3}$ function of both $\mu$ and $x$,
(1) $F\left(\mu_{0}, x_{0}\right)=x_{0}$
(2) $\frac{\partial F}{\partial x}\left(\mu_{0}, x_{0}\right)=1$
(3) $\frac{\partial^{2} F}{\partial x^{2}}\left(\mu_{0}, x_{0}\right)>0$
(4) $\frac{\partial F}{\partial \mu}\left(\mu_{0}, x_{0}\right)>0$.

By a conjugate transformation using an affine map and reparametrization we can transform (1.1) into the following form:

$$
\begin{equation*}
F(\mu, x)=\mu+x-x^{2}+\mu x f(\mu, x)+x^{3} g(x) \tag{1.2}
\end{equation*}
$$

here $f(\mu, x)$ and $g(x)$ are continuous at the origin.
Further we introduce a noise in 1-dimensional dynamical system given by (1.2) which is different from [4] as

$$
\begin{equation*}
X_{n+1}=F\left(\mu, X_{n}\right)+|\mu|^{1+\theta} \cdot \xi_{n} \tag{1.3}
\end{equation*}
$$

here $\theta>0$ and $\xi_{n}$ is bounded random variable.
We are interested in getting the order of increase of the duration in "laminar phase" by (1.3) as $\mu \uparrow 0$.
2. Definition and main result. Definition. Let $\delta>0$ and $F(\mu, x)$ be given by (1.2). We say $\delta$ is suitable if there exists $\mu_{0}<0$ such that $F(\mu, x)<x$ for $(\mu, x) \in\left[\mu_{0}, 0\right] \times[-\delta, \delta]-\{(0,0)\}$.

Remark. By the definition of $F(\mu, x), \delta$ which is sufficiently near 0 is suitable.

Definition. Let $\delta>0$ be suitable and consider a sequence

$$
\begin{equation*}
x_{0}=\delta, \quad x_{n+1}=F\left(\mu, x_{n}\right)+|\mu|^{1+\theta} \cdot \xi_{n} \tag{2.1}
\end{equation*}
$$

here $\theta>0$ and there exists $C>0$ such that $\left|\xi_{n}\right|<C$ for all $n$. We define sojourning time in $[-\delta, \delta]$ denoted by $T_{\delta}(\mu)$ as

$$
T_{\delta}(\mu)=\min \left\{n: x_{n}<-\delta\right\} .
$$

Main theorem. Let $\delta$ be suitable, then w.e have

$$
\begin{equation*}
\lim _{\mu \not 0} \sqrt{-\mu} \cdot T_{\delta}(\mu)=\pi \tag{2.2}
\end{equation*}
$$

3. Proof of the main theorem. Let $\eta=\sqrt{-\mu}$ and we use $T_{\delta}(\eta)$ in place of $T_{\delta}\left(-\eta^{2}\right)$.

Lemma 1. Let

$$
\begin{equation*}
\alpha>0, \quad R(\alpha, \eta, x)=\frac{x-\alpha \eta^{2}}{1+\alpha x} \tag{3.1}
\end{equation*}
$$

$x_{0}=\delta, x_{n+1}=R\left(\alpha, \eta, x_{n}\right)$ and $S_{\delta}(\alpha, \eta)=\min \left\{n: x_{n}<-\delta\right\}$. Then,

$$
\begin{equation*}
S_{\delta}(\alpha, \eta)=\left[\frac{2 \cdot \operatorname{Tan}^{-1}(\delta / \eta)}{\operatorname{Tan}^{-1}(\alpha \eta)}\right]+1 \tag{3.2}
\end{equation*}
$$

Proof of Lemma 1. $R(\alpha, \eta, x)$ is projection of a rotation around $(0,-\eta)$ with angle $\operatorname{Tan}^{-1}(\alpha \eta)$ to $x$-axis. Consequently $R(\alpha, \eta, x)$ is conjugate to $y-\operatorname{Tan}^{-1}(\alpha \eta)$ by $y=\operatorname{Tan}^{-1}(x / \eta)$ and then $[-\delta, \delta]$ is mapped bijectively to $\left[-\operatorname{Tan}^{-1}(\delta / \eta), \operatorname{Tan}^{-1}(\delta / \eta)\right]$. Therefore we have (3.2).

Lemma 2. Let $0<\varepsilon<1$, then there exists $\Delta>0$ such that for all $\delta \in(0, \Delta)$

$$
\begin{equation*}
\pi(1-\varepsilon) \leqq \varliminf_{\eta \downarrow 0} \eta \cdot T_{\delta}(\eta) \leqq \varlimsup_{\eta \downarrow 0} \eta \cdot T_{\delta}(\eta) \leqq \pi(1+\varepsilon) \tag{3.3}
\end{equation*}
$$

Proof of Lemma 2. Let

$$
h(x, \eta)=\frac{\eta^{2} x \cdot f\left(-\eta^{2}, x\right)-x^{3} g(x)}{\eta^{2}+x^{2}}
$$

then $h(0,0)=0$ and $h(x, \eta)$ is continuous at ( 0,0 ). From (1.2) and (3.1),

$$
\begin{aligned}
& R\left(\frac{1}{1+\varepsilon}, \eta, x\right)-F\left(-\eta^{2}, x\right)=\left(x^{2}+\eta^{2}\right)\left(\frac{\varepsilon+x}{1+\varepsilon+x}+h(x, \eta)\right) \\
& R\left(\frac{1}{1-\varepsilon}, \eta, x\right)-F\left(-\eta^{2}, x\right)=\left(x^{2}+\eta^{2}\right)\left(\frac{-\varepsilon+x}{1-\varepsilon+x}+h(x, \eta)\right)
\end{aligned}
$$

As $\varepsilon /(1+\varepsilon)>0,-\varepsilon /(1-\varepsilon)<0$ and $x^{2}+\eta^{2} \geqq 0$, there exist $\Delta, \eta_{*}>0$ such that

$$
\begin{equation*}
R\left(\frac{1}{1-\varepsilon}, \eta, x\right) \leqq F\left(-\eta^{2}, x\right) \leqq R\left(\frac{1}{1+\varepsilon}, \eta, x\right) \tag{3.4}
\end{equation*}
$$

for any $(\eta, x) \in\left[-\eta_{*}, \eta_{*}\right] \times[-\Delta, \Delta]$. Now $\left|\xi_{n}\right|$ is bounded, hence for sufficiently large $A>0$ we have

$$
\begin{equation*}
-\frac{A|\eta|^{+2 \theta}}{1-\varepsilon+x}<\eta^{2+2 \theta} \cdot \xi_{n}<\frac{A|\eta|^{2+2 \theta}}{1+\varepsilon+x} \tag{3.5}
\end{equation*}
$$

for $x \in[-\Delta, \Delta]$. Then by (3.4) and (3.5) we have

$$
\begin{equation*}
R\left(\frac{1}{1-\varepsilon}, \eta_{2}, x\right)<\eta^{2+2 \theta} \cdot \xi_{n}+F\left(-\eta^{2}, x\right)<R\left(\frac{1}{1+\varepsilon}, \eta_{1}, x\right) \tag{3.6}
\end{equation*}
$$

here $\eta_{1}=\eta \sqrt{1+A \eta^{2 \theta}}$ and $\eta_{2}=\eta \sqrt{1-A \eta^{2 \theta}}$. In (3.6) the left-hand side
decreases faster than $F$ in $[-\Delta, \Delta]$ and the right-hand side decreases slower than $F$ in $[-\Delta, \Delta]$. Therefore for any $\delta \in(0, \Delta)$ we have

$$
S_{\delta}\left(\frac{1}{1-\varepsilon}, \eta_{2}\right) \leqq T_{\delta}(\eta) \leqq S_{\delta}\left(\frac{1}{1+\varepsilon}, \eta_{1}\right) .
$$

Both sides are given by (3.2) and we have (3.3) through elementary calculation.

Proof of the main theorem. Let $\delta$ be suitable and $0<\delta^{\prime}<\delta$, then by definition

$$
M=\min \left\{\left|x-F(\mu, x)-|\mu|^{1+\theta} \cdot C\right|:(\mu, x) \in\left[\mu_{*}, 0\right] \times\left[\delta^{\prime}, \delta\right] \cup\left[-\delta,-\delta^{\prime}\right]\right\}
$$

exists and is positive for some $\mu_{*}$. Hence the sojourning time in $\left[\delta^{\prime}, \delta\right]$ and in $\left[-\delta,-\delta^{\prime}\right]$ are bounded by $\left(\delta-\delta^{\prime}\right) / M$. Therefore we have

$$
T_{\delta}(\mu)-2\left(\delta-\delta^{\prime}\right) / M \leqq T_{\delta^{\prime}}(\mu) \leqq T_{\delta}(\mu) .
$$

Hence we have

$$
\varliminf_{\mu \neq 0} \sqrt{-\mu} \cdot T_{\delta^{\prime}}(\mu) \leqq \varliminf_{\mu \neq 0} \sqrt{-\mu} \cdot T_{\delta}(\mu) \leqq \varlimsup_{\mu \not 0} \sqrt{-\mu} \cdot T_{\delta}(\mu) \leqq \varlimsup_{\mu \neq 0} \sqrt{-\mu} \cdot T_{\delta^{\prime}}(\mu) .
$$

By Lemma 2, both sides are bounded by $\pi(1-\varepsilon)$ and $\pi(1+\varepsilon)$ respectively. Hence we have (2.2).

Remark. The key idea of the proof of our theorem is that $F(\mu, x)$ satisfying (1.2) is well approximated by $R(1, \sqrt{-\mu}, x)=(x+\mu) /(1+x)$ which is essentially a rotation around $(0,-\sqrt{-\mu})$.

At the end of this paper I would like to thank Prof. M. Yamaguti for his advice and encouragement.

## References

[1] P. Manneville and Y. Pomeau: Different ways to turbulence in dissipative dynamical systems. Physica, 1D, 219-226 (1980).
[2] Y. Pomeau and P. Manneville: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys., 74, 189-197 (1980).
[3] J. Guckenheimer: On the bifurcation of maps of the interval. Invent. math., 39, 165-178 (1977).
[4] J. P. Eckmann, L. Thomas, and P. Wittwer: Intermittency in the presence of noise. J. Phys., A: Math. Gen., 14, 3153-3168 (1981).

