132. On Poles of the Rational Solution of the Toda Equation of Painlevé-IV Type

By Yoshinori Kametaka
Department of Applied Mathematics, Faculty of Engineering, Ehime University
(Communicated by Kôsaku Yosida, m. J. A., Dec. 12, 1983)

§ 1. Okamoto's polynomials. K. Okamoto [1] found an interesting new rational solution of the Toda equation which produces a sequence of infinitely many rational solutions of Painlevé-IV equation. According to him the recurrence relations

$$
\begin{gather*}
P_{0}=1, \quad P_{1}=t, \tag{1.1}\\
P_{n-1} P_{n+1}=P_{n} P_{n}^{\prime \prime}-P_{n}^{\prime 2}+\left(t^{2}-2 n\right) P_{n}^{2} \tag{1.2}\\
P_{-n}(t)=i^{n(n+2)} P_{n}(i t), \tag{1.3}\\
Q_{0}=1, \quad Q_{1}=t^{2}-1, \tag{1.4}\\
Q_{n-1} Q_{n+1}=Q_{n} Q_{n}^{\prime \prime}-Q_{n}^{\prime 2}+\left(t^{2}-2 n-1\right) Q_{n}^{2} \tag{1.5}
\end{gather*}
$$

determine two series of polynomials

$$
\begin{gather*}
\boldsymbol{P}_{n}=\sum_{j=0}^{[n 2 / 2]} P_{n, j} t^{n^{2}-2 j}, \tag{1.7}\\
Q_{n}=\sum_{j=0}^{n(n+1) / 2} Q_{n, j} t^{n(n+1)-2 j}
\end{gather*}
$$

with integral coefficients ($P_{n, 0}=Q_{n, 0}=1$).

$$
\begin{gather*}
r_{n}=P_{n-1} P_{n+1} / P_{n}^{2}=\left(\log P_{n}\right)^{\prime \prime}+t^{2}-2 n, \tag{1.9}\\
s_{n}=\left(\log P_{n-1} / P_{n}\right)^{\prime}+2 t
\end{gather*}
$$

satisfies the Toda equation

$$
\begin{gather*}
s_{n}^{\prime}=r_{n-1}-r_{n}, \quad r_{n}^{\prime}=r_{n}\left(s_{n}-s_{n+1}\right) . \tag{1.11}\\
\tilde{r}_{n}=Q_{n-1} Q_{n+1} / Q_{n}^{2}=\left(\log Q_{n}\right)^{\prime \prime}+t^{2}-2 n-1, \tag{1.12}\\
\tilde{\boldsymbol{s}}_{n}=\left(\log Q_{n-1} / Q_{n}\right)^{\prime}+2 t \tag{1.13}
\end{gather*}
$$

also satisfies the Toda equation

$$
\begin{equation*}
\tilde{s}_{n}^{\prime}=\tilde{r}_{n-1}-\tilde{r}_{n}, \quad \tilde{r}_{n}^{\prime}=\tilde{r}_{n}\left(\tilde{s}_{n}-\tilde{s}_{n+1}\right) \tag{1.14}
\end{equation*}
$$

If we define q_{n} and p_{n} by

$$
\begin{gather*}
q_{n}=-P_{n+1} Q_{n-1} / P_{n} Q_{n}, \tag{1.15}\\
p_{n}=-P_{n-1} Q_{n} / P_{n} Q_{n-1}=-i q_{-n}(i t) \tag{1.16}
\end{gather*}
$$

then
(1.17)

$$
y_{n}(x)=\sqrt{2 / 3} q_{n}(\sqrt{2 / 3} x)
$$

satisfies P-IV $\left(n,-2(n+1 / 3)^{2}\right)$ where we mean by P-IV (α, β) the Painlevé-IV equation

$$
\begin{equation*}
y^{\prime \prime}=y^{\prime 2} / 2 y+(3 / 2) y^{3}+4 x y^{2}+2\left(x^{2}-\alpha\right) y+\beta / y \tag{1.18}
\end{equation*}
$$

Notice that
(1.19)

$$
z_{n}(x)=\sqrt{2 / 3} p_{n}(\sqrt{2 / 3} x)=-i y_{-n}(i x)
$$

also satisfies Painlevé-IV equation P-IV $\left(n,-2(n-1 / 3)^{2}\right)$.
§2. Main results. We proved that
Theorem 2.1. (1) P_{n} and Q_{n} are really polynomials of degree n^{2} and $n(n+1)$ with integral coefficients. Q_{n} are even functions, that is, are polynomials of t^{2} of degree $n(n+1) / 2$.
(2) All zeros of P_{n} and Q_{n} are simple.
(3) Each pair of polynomials $\left\{\boldsymbol{P}_{n}, \boldsymbol{P}_{n+1}\right\},\left\{Q_{n}, Q_{n+1}\right\},\left\{\boldsymbol{P}_{n}, Q_{n}\right\},\left\{\boldsymbol{P}_{n+1}\right.$, $\left.Q_{n}\right\}$ and $\left\{P_{n+2}, Q_{n}\right\}$ has no common zero.
(4) $\quad r_{n}\left(\tilde{r}_{n}\right)$ has $n^{2}(n(n+1))$ double poles.
(5) $s_{n}\left(\tilde{s}_{n}\right)$ has $2 n(n-1)+1\left(2 n^{2}\right)$ simple poles.
(6) $\quad q_{n}\left(p_{n}\right)$ has $n(2 n+1)(n(2 n-1))$ simple poles.

As a consequence of the above theorem P_{n} and Q_{n} can be expressed as

$$
\begin{equation*}
P_{n}=\prod_{k=1}^{n^{2}}\left(t-a_{n, k}\right), \quad Q_{n}=\prod_{k=1}^{n(n+1)}\left(t-b_{n, k}\right) . \tag{2.1}
\end{equation*}
$$

Sharp estimates for the maximal moduli

$$
\begin{gather*}
A_{n}=\max \left\{\left|a_{n, k}\right| ; 1 \leq k \leq n^{2}\right\}, \tag{2.2}\\
B_{n}=\max \left\{\left|b_{n, k}\right| ; 1 \leq k \leq n(n+1)\right\} \tag{2.3}
\end{gather*}
$$

for zeros of these polynomials were obtained.
Theorem 2.2 (Main theorem).

$$
\begin{equation*}
\{2 n(n+2) / 3(n+1)\}^{1 / 2} \leq A_{n+1} \leq 3 n^{1 / 2}, \tag{2.4}
\end{equation*}
$$

(2.5) $\quad\{(2 n+3) / 3\}^{1 / 2} \leq B_{n+1} \leq 3\{(2 n+1) / 2\}^{1 / 2}, \quad n=0,1,2, \cdots$.

Moreover we can show the inequality
(2.6) $\quad B_{n+1}>A_{n+1}>B_{n}>A_{n}>B_{1}=1>A_{1}=0, \quad n=2,3,4, \cdots$.

The proof of our main theorem is almost the same as that for our previous result [2]. We showed an analogous sharp estimate for the maximal modulus of poles of the rational solution of the Toda equation of Painlevé-II type. Detailed proof will be published elsewhere. Here we only list up the fundamental recurrence relations which are satisfied by rational functions $q_{n}, p_{n}, r_{n}, s_{n}, \tilde{r}_{n}$ and \tilde{s}_{n}.
§3. Recurrence relations. The rational functions q_{n} and p_{n} are uniquely determined by the recurrence relation

$$
\begin{gather*}
p_{0}=q_{0}=-t, \tag{3.1}\\
p_{n}=-p_{n-1}-q_{n-1}-3 t-(3 n-2) / q_{n-1}, \tag{3.2}\\
q_{n}=-p_{n}-q_{n-1}-3 t-(3 n-1) / p_{n}, \tag{3.3}\\
p_{-n}(t)=-i q_{n}(i t), \quad q_{-n}(t)=-i p_{n}(i t), \quad n=1,2,3, \cdots \tag{3.4}
\end{gather*}
$$

We can derive the following relations

$$
\begin{gather*}
p_{n}^{\prime}=p_{n}\left(p_{n}+2 q_{n}+3 t\right)+3 n-1 \tag{3.5}\\
q_{n}^{\prime}=-q_{n}\left(2 p_{n}+q_{n}+3 t\right)-3 n-1 \tag{3.6}
\end{gather*}
$$

Eliminating p_{n} from (3.5) and (3.6) we can show that $y_{n}(x)$ defined by (1.17) satisfies Painlevé-IV equation. Above relations (3.5) and (3.6) can also be expressed as

$$
\begin{equation*}
p_{n}^{\prime}=p_{n}\left(q_{n}-q_{n-1}\right), \quad q_{n}^{\prime}=q_{n}\left(p_{n+1}-p_{n}\right) . \tag{3.7}
\end{equation*}
$$

So if we introduce
(3.8)

$$
r_{n}=p_{n} q_{n}, \quad s_{n}=-p_{n}-q_{n-1}
$$

and
(3.9) $\quad \tilde{r}_{n}=p_{n+1} q_{n}, \quad \tilde{s}_{n}=-p_{n}-q_{n}$
then $\left\{r_{n}, s_{n}\right\}$ and $\left\{\tilde{r}_{n}, \tilde{s}_{n}\right\}$ are both solutions of the Toda equation. Values of these rational solutions can be calculated through the following recurrence relations.

$$
\begin{array}{cc}
(3.10) & s_{0}=2 t+t^{-1}, \quad r_{0}=t^{2}, \tag{3.10}\\
(3.11) & s_{n}=\left\{\left(r_{n-1}+3 n-4\right)\left(r_{n-1}+3 n-2\right)\right\} /\left\{r_{n-1}\left(s_{n-1}-3 t\right)\right\}+3 t, \\
(3.12) & r_{n}=-r_{n-1}-6 n+3-s_{n}\left(s_{n}-3 t\right), \\
(3.13) & r_{-n}(t)=-r_{n}(i t), \quad s_{-n}(t)=-i s_{n+1}(i t), \quad n=1,2,3, \cdots \\
(3.14) & \tilde{s}_{0}=2 t, \quad \tilde{r}_{0}=t^{2}-1, \\
(3.15) & \tilde{s}_{n}=\left\{\left(\tilde{r}_{n-1}+3 n-1\right)\left(\tilde{r}_{n-1}+3 n-2\right)\right\} /\left\{\tilde{r}_{n-1}\left(\tilde{s}_{n-1}-3 t\right)\right\}+3 t, \\
(3.16) & \tilde{r}_{n}=-\tilde{r}_{n-1}-6 n-\tilde{s}_{n}\left(\tilde{s}_{n}-3 t\right), \\
(3.17) & \tilde{r}_{-n}(t)=-\tilde{r}_{n-1}(i t), \quad \tilde{s}_{-n}(t)=-i \tilde{s}_{n}(i t), \quad n=1,2,3, \cdots
\end{array}
$$

References

[1] K. Okamoto: private communication.
[2] Y. Kametaka: On poles of the rational solution of the Toda equation of Painlevé-II type. Proc. Japan Acad., 59A, 358-360 (1983).

