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Institute of Mathematics, University of Tsukub

(Communicated by K6saku YOSIDA, M. J. A., Dec. 12, 1983)

1. Introduction. Kashiwara and Kawai [6] constructed funda-
mental solutions for (partially) micro-hyperbolic operators, micro-
localizing the results of Bony and Schapira [3]. Miwa [8] applied
their results and studied the propagation of analytic singularities.
(see, also., Bony-Schapira [4], Bony [2], Kashiwara-Schapira [7],.
SjSstrand [10]). On the other hand, in [13], we micro-localized the..
results in Bronshtein [5] and studied singularities (in Gevrey classes)
solutions of the Cauchy problem, using generalized Hamilton flows
defined in [11]. So, applying the arguments in [13], we can easily
obtain a result on analytic singularities of solutions of the hyperbolic
Cauchy problem from the results of Kashiwara and Kawai [6].

2. Assumptions and results. Let P(x,lx)=ll_,a(x)(/x)
be a partial differential o.perator, where x=(x,..., x)e R and 3/3x

(3/3x, ..., 3/3x). Assume that
(A-l) the a,(x) are real analytic on R,
(A-2) P,(x, )==, a.(x) is hyperbolic with respect to

8=(1,0, ...,0) eR, i.e.,
P(x, J-L-+ra)g=0 for x e R, e R and

First let us define the localization P,(,z) at z=(x, /--:) e /- 1T*R
RJ-A--$R by

P,(x+sx, ---+-ls)=s"(P,,(x,*)+o(1)) as s 30,
where P,,(z) 0 (in ,z) is (homogeneous) polynomial of ,z= (,x, 3).
e T(/-A--$T*R)--R. Then P,(3z) is hyperbolic with respect to.
(0, O) e R (see [11]). Therefore, we can define F(P,, (0, 9)) as the
connected component of the set {/z e Tz(J-A---tT*R); P,(z)=/=0} which
contains (0, 8). Define

F,=F(P,, (0, O))cT(/- 1T*R),
F--(((x, ) T,(J-T*R) 8x. --y. (= a((x, 6), (y, )))
-0 or any (y, 6r2) e F,},

K----{z(t) e /-Z-T*R; {z(t)} is a Lipschitz continuous curve
satisfying (d/dt)z(t) F(t) (a.e. t) and z(0)=z, and ___t:>0}

(see [11]-[13]). It is easy to see that K (x(t)(,o)--K X {0} where K
{x(t)} is a Lipschitz continuous curve satisfying (d/dt)x(t) e F(P(x(t),. ),
)* (a.e. t) and x(O)=x, and +t>O} and F*={/x; x.>=O for any
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e F}. We refer to Wakabayashi [13] for some properties of "flows"
K:. We denote by _(R) the space of all hyperfunctions on R. Define

S. S. u-{(x, /-L-i) e [:--T*R; x e Supp u and -0}
3 ((x, -i) e /- 1T*R =/=0 and (x, /-:oo) e S.S. u}

for u e _(R), where S.S. u denotes the singular spectrum of u (see
[9]). In order to state the result globally, we assume that

(A-3) K; f {x_0} is bounded for every x e
Theorem. Assume that (A-1)-(A-3) are satisfied. If u e 2(R)

satisfies the Cauchy problem

P(x, 3/x)u--f,(CP) [Supp u{x>_0},
where f e (R) and Suppf{x_0}, then

S. S. u(z e j-L-- iT*R z e K+ for some w e S. S. f}.
Remark. Bony and Schapira [3] proved well-posedness of the

hyperbolic Cauchy problem, in the framework of hyperfunctions.
3. Proof of theorem. We. write

f_. /-LT.R\R
_
R (f--R\ O}) L /-LS*R,, .R, /-:IS

We take canonical coordinates (x, /--)of/: and homogeneous canoni-
cal coordinates (x, -ioo) of L. Moreover, we also use inhomogene-
ous local coordinates (x, p) of L in a neighborhood of q:O, where.
p=(p, ...,p_) and p=-/ (]=1, ...,n-l). The canonical
map v"/-+L" (x, /-:-) (x, /-:oo) induces a map ." S/
-+ /-L-SL (or sf_.SL). Since. (x,) e P<. _-,> for (x,
(x,/) e P, _,> and >0, we can define

/--{r.(x, /-L-i, zZ-v0) e :-S L v e F
where z=(x, f:--oo)e L. Lemma 2.14 in [13] gives the following

Lemma 1. For z e L, P(x, 3/3x) is partially micro-hyperbolic at
(z, + vO) if (z, vO) e 1. Here we refer to Kashiwara-Kawai
[6] for the definition of partial micro-hyperbolicity (see., also., [8]).

We write L L-/- 1S*R\(R L U L R) and take homogene-
ous canonical coordinates (x, y, z:--i(, ])oo) of L L. Then L is iden-
tiffed with the set {(x, x, /- 1(, -)oo) e L : L}. If we use inhomo-
geneous local coordinates (x, y, p, q) o L: L in a neighborhood of
=/=0, where p=-/ (]=l,...,n-1), q=(q,...,q)and q
-]/ (] 1, ..., n), then we can also write L={(x, x, p, --p, 1)

e L<L) (locally). Let be a subbundle of S*(L <L) induced from.
the fundamental 1-form on L : L, i.e.,

n-1(9= {(x, x, p,--p, 1, +(dx-,=pdx-dy+-ipdy)oo) e S*(L , L)}
(locally).

Moreover we identify S*L with a subbundle of S*(L L) by the map"
n-1(x, p, (,= adx+=bdp)oo)
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n-1-->(x, x, p, --p, 1, (__adx--=ady+_=bdp
+,: bjdqj+(,: bp)dq)).

We can assume without loss of generality that n0. The canonical
map H from S(L L) to 4-1SL is defined as follows" H maps

(x, x, p, --p, 1, (.adx--=ady+:bdp+=bdq))
(x, p, J-I(Eb(/x)-E: (%+ap)(/p))O)

(see [8]). Let z e L and define
F=H-()S$L.

Denote by F the polar of F in SL, i.e.,
F={(z, v0) e SL (V, v}0 for any (z, V) e F}.

Then we have
( 1 ) F= {(z, (. a(a/ax)-:;l(b+ bp)(a/ap))0) e SL

a 0 and ab-=ab<0
for any=a’(3/3x)+= b(3/3) e F(, _)
with a=0} for z=(x, p)= (x, j-1) e L.

Lemma 2. Let p() be a hyperbolic polynomial with respect to ,
and put q(’)=p(’, 0), where =(’, ). Then

=(F(p, )*)= F(q, ())*,
where " RnR-" ’.

Proof. Using (3.57) in [1], one can prove the lemma by the same
argument as in Theorem 4.5 in [11]. Q.E.D.

Since (6x, 2+6) e F(,) for (x, ) e F(,,) and 2 e R, Lemma
2 and (1) give the ollowing

Lemma . For z (x,)e L,
F= {r.(x,,vO) e SL -v e F(, )}.

Proposition (Kashiwara-Kawai [6]). If Pu=f, z e S.S. f and
SG F=0, where G=S.S. u, then z S.S.u. Here SG is the normal
set of G along {z} (see [6]).

Lemma 4 (Lemma 3.1 in [13]). Let (x, - 1) e , and let M be a
a compact set in F(,,)cRn. Then there is a neighborhood U of
(x,) in such that MF(,,) for any (y, -1) e U.

Let u be a solution of (CP). Then, from Proposition and Lemma
4 it easily follows that or a compact set M in F(,) there is 0
such that S.S. u {(y, J 1) y x- t, (x y, J 1( )) e M}
if Ot, z=(x,)e S.S. u and z S.S.f. Here depends on
M and f. Applying the same. argument as in [13], we have

S.S.uKs,e){(y,); y=t} or -etgx
if (x,)eS.S.u and K,)S.S.f=, where. (0) depends

on x. Since. S.S. u(x0}, this proves the theorem.
Finally we remark that one can obtain the same result for hyper-

bolic systems, applying the results in Kashiwara-Schapira [7].
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