129. There are no Transitive Anosov Diffeomorphisms on Negatively Curved Manifolds^{*)}

By Koichi YANO

Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1983)

Let $f: M \to M$ be an Anosov diffeomorphism. (See [4] for the definition.) We call f transitive if $\Omega(f) = M$. The aim of this note is to prove the following

Theorem.^{**)} Let M be a closed manifold which admits a Riemannian metric of negative sectional curvature. Then there are no transitive Anosov diffeomorphisms on M.

Proof. It suffices to prove the theorem in the case that dim $M \ge 3$. Assume the contrary, i.e., there exists a transitive Anosov diffeomorphism $f: M \to M$. If necessary, taking a finite covering of M, we may assume that the stable and the unstable foliations of f are orientable. We may also assume that the dimension u of the unstable foliation is greater than one. Then, Ruelle-Sullivan [3] says that there are a $\lambda > 1$ and an $\alpha \neq 0$ in $H_u(M; \mathbf{R})$ such that $f_*(\alpha) = \pm \lambda \alpha$. Taking the value of Gromov's pseudo-norm Γ (for the definition, see [1] or [2]), we get $\lambda \Gamma(\alpha) = \Gamma(f_*\alpha) \leq \Gamma(\alpha)$ and thus $\Gamma(\alpha) = 0$. This contradicts a result obtained by Gromov [1] and Inoue-Yano [2] and thus the proof completes.

References

- M. Gromov: Volume and bounded cohomology. Publ. Math. I.H.E.S., 56, 5-99 (1982).
- [2] H. Inoue and K. Yano: The Gromov invariant of negatively curved manifolds. Topology, 21, 83-89 (1981).
- [3] D. Ruelle and D. Sullivan: Currents, flows and diffeomorphisms. Topology, 14, 319-327 (1975).
- [4] S. Smale: Differentiable dynamical systems. Bull. Amer. Math. Soc., 73, 747-813 (1967).

^{*)} Partially supported by the Sakkokai Foundation.

 $^{^{\}ast\ast\ast)}$ The author is thankful to S. Matsumoto for kind discussion on the proof of this theorem.