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1. Introduction. Let M be a surface of revolution with the para-
metrization f(u, v)= (a(u) cos v, a(u) sin v, b(v)). Let a be a geodesic
on M, r(t) the radius of the parallel (u--const.) and O(t) the angle
between and the meridium (v--const.) at a(t). Then the relation

r(t).sin 0(t)=const. at (t)
is satisfied for any geodesic a on M. This. is "Clairaut’s theorem for
a surface of revolution". This theorem implies that for some parallel
submanifold N (u--const.) there exists a geodesic c on M acrossing N
with the same angle:that is for some intersection points a(t), a(t2)
e N , ((t), T(,N)-- ((t), T(N) where (a(t), T(t)N) is, the
angle between a(t) and the 1-dimensional line T,(,)N. This geodesic
is called "a geodesic with the same angle for N". (The definition will
be given later. Roughly speaking it is a geodesic on M which starts
from the submanifold N with one angle and ends in N with the same
angle.) In our previous paper [3] we considered under the condition
of codimension 1 the existence of such geodesics which is a higher
dimensional generalization of the above theorem in a sense. In this
note we consider the general case of an arbitrary codimension. Our
main result is the following

Theorem. Let M be a complete Riemannian manifold, N a con-
nected compact closed submanifold without boundary and f an isometry
on M with f(N) N.

If f has a finite number of fixed points on N and if M is simply
vonnected, then there exists a non-trivial geodesic with the same angle
for N, except the case in which f has exactly one fixed point.

If f is fixed point free, then there exists always a non-trivial
geodesic with the same angle for N.

Our method of proof is much the same as our previous paper.
The author would like to thank Prof. M. Tanaka of Tokai University
for his advice to remove the condition of codimension I and his en-
.couragement.

2. Hilbert submanifolds and energy functions. Let M be a
complete Riemannian manifold with. a Riemannian metric (, } and
let L(I, M) be the set of absolutely continuous maps from .the unit
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interval I--[0, 1] to M with square integrable derivative. Then it is
known that L(I, M) is a complete Hilbert Riemannian manifold with
the Riemannian structure given by

<<X, Y.>> :.[o {<X.(t),

where X., Y. are elements of the tangent space T.L(I, M) at a of
L[(I, M)which is a linear space of absolutely continuous vector field
along a on M with square integrable covariant derivative F.X.. Let
N be a closed submanifold of M without boundary, let f be an isometry
on M with f(N)--N and A(M, f)-(a e L(I, M)[ f(a(0))----a(1), a(0) e N},
then we have the following

Proposition 2-1 [:}]. A(M, f) is a Hilbert Riemannian submni-
fold of L(I, M) and its tangent space T.A(M, f) at is given by
T.A(M, f)

{X. e T.L(I, M) (X.(O), X.(1)) e T.(o)N T.(.N, f.X.(O)=X.(1)}.
Define an energy function E" L(I, M)-R by

E() - (t)11 dt.

Then it is a C map. In particular we consider the restriction of E
to A(M, f) and denote it b.y the same symbvl E. Since a critical point
or E is a geodesic, we have only to. study a critical point for E. In
fact the following general proposition has been obtained by K. Grove.

Proposition 2-2 [1]. If V is a submanifold of L(I, M) such that

T.V for a e V contains all X. e T.L(I, M) with X,(0)=0 and X,(1)=0
and if a is a critical point for E], then is C and a is a geodesic.

Now we introduce a new type of geodesics in order to. see what
sort o geodesic is a critical point o.f E on A(M, f). Let M be a com-
plete Riemannian manifold and let N be a closed submanifold. Let
c" I--M be a smooth curve with x c(t) e N or some t e I and let P be
an orthogonal projection of TM to TN. We denote the angle be-
tween d(t) and P(5(t)) by (5(t), TN).

Definition 2-:. A geodesic a" I--M with (a(0), a(1)) e N N is
called "a geodesic with the same angle for N" (simply "a geodesic with
the same angle") if ((0), T.(o)N) ((1), T.()N).

In our previous paper we introduced the concept of the same angle
which was defined by the angle between the velocity vector of a and
the normal vector of N in M in view of he condition of codimension
1. However we can find that the theory developed in [3] is valid for
our’ new concept of the same angle. The following theorem is essen-
tial in order to get a satisfactory development of our previous theory.
Combining Propositions 2-1 and 2-2, we have

Theorem 2-4. Let M be a complete Riemannian manifold, N a
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closed submanifold without boundary and f an isometry of M with
f(N)=N.

If e 4N(M, f) is a critical point for E" AN(M, f)--R, then is a
geodesic with the same angle.

Proof. First we note that

for all X: e T.A(M, f) in K. Grove [1]. Assume that a e A(M, f) is
a critical point of E, then a is a geodesic on M by Proposition 2-2 so
that for any tangent vector X: e T.A(M, f)

dE(X.)=I2 (VX(t), (t)}dt=f2 {(VX.(t), (t))+(X.(t), V(t)}}dt

=’0 <X.(t), (t)>dt=<X.(1), (t)>-<X.(0), (0)}

<X(1), &(1)--f,&(0)>.
Since a is a critical point of E, we have &(1)--f,&(O)T(,N and
therefore P(&(1))=P(f.&(O)). On the other hand, since

)," T(oNT(N
is a linear isomorphism by the assumption f(N)= N and P.f,

(f )," P0, we have P((1))=f,P0((0)). Thus
0= ((1)-f,(0), f,P0((0)))

implies ((1), P((1)))=((0), P0((0))). Hence a is a geodesic with
the same angle. Q.E.D.

3. Proof of Main Theorem. We can prove the following lemma.
in the same manner in the proof of Lemma 2-6 [3].

Lemma 3-1. Let M be a complete Riemannian manifold, N a
connected compact closed submanifold without boundary and f an
isometry of M such that f(N)=N and F(N,f) where F(N, f) is the
set of fixed point of f].

If there exists no non-trivial geodesic with the same angle, then
the inclusion i" F(N, f)A(M, f) is a homotopy equivalence. More-
over there exists a non-trivial geodesic with the same angle if F(N, f)

Now we prove the main theorem. I f is fixed point ree, then
the existence of our geodesic is evident by the last hal of Lemma 3-1.
So we suppose that f has fixed points on N, that the number’ of fixed
points is finite and is not less than two and that (M)=0. Since the
fibration

A(M, f)G(M, N, f)N
has a fiber A,(M)= {a e A(M, f) a(0)=a(1)=p} where f(p)=p is a base
point in N and G(M, N, f)={(x,f(x))[x e N}, the homotopy exact
sequence
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o(A(M))o(A(M, f))--->ro(N) 0
11

7Co(9,(M))-I(M) 0
gives ro(A2v(M, f))-0 because A,(M) is the same homotopy type to the
loop space 9(M) at p. By the assumption rco(F(N, f))4:0 and we have
the conclusion of the main theorem by Lemma 3-1.
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