122. Generalized Splitting Theorem for Map-Germs

By Fumio ICHIKAWA

Department of Mathematics, Tokyo Metropolitan University

(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1983)

§1. Introduction. Let K be the field of real numbers R or complex numbers C. In the classification theory of singularities of C^{∞} -(resp. holomorphic) functions $f: (K^n, 0) \rightarrow (K, 0)$, Thom's splitting theorem plays an important role (see [1], [7]). It can be stated that a C^{∞} -(resp. holomorphic) function f of n variables whose first derivatives vanish at the origin and the rank of Hessian matrix $(\partial^2 f/\partial x_i \partial x_j)(0)$ equals n-j, can be written (after a change of coordinates) in the form $f(x_1, \dots, x_n) = g(x_1, \dots, x_j) + \sum_{i=j+1}^n \pm x_i^2$ where the second derivatives of g vanish at the origin. Thus the classification of functions $f(x_1, \dots, x_n)$ is reduced to that of functions $g(x_1, \dots, x_j)$.

In this note we shall announce some results on normal forms and generalized splitting theorem for map-germs $f: (K^n, 0) \rightarrow (K^p, 0)$ whose rank of Jacobian matrix at the origin equals p-1 $(n \ge p)$. As applications of these theorems we obtain some classification and normal forms of certain finitely determined singularities of mapgerms. Details and the applications of these theorems will appear elsewhere.

§ 2. Definitions and notations. Let $\mathcal{E}(n, p)$ be the set of all C^{∞} -(resp. holomorphic) map-germs $f: (\mathbf{K}^n, 0) \to (\mathbf{K}^p, 0)$. We denote by L(n)(resp. L(p)) the group of $(C^{\infty}$ or holomorphic) local diffeomorphisms $\varphi: (\mathbf{K}^n, 0) \to (\mathbf{K}^n, 0)$ (resp. $\psi: (\mathbf{K}^p, 0) \to (\mathbf{K}^p, 0)$). The group $L(n) \times L(p)$ acts on $\mathcal{E}(n, p)$ as follows; $(\varphi, \psi)f = \psi \circ f \circ \varphi$ where $(\varphi, \psi) \in L(n) \times L(p)$ and $f \in \mathcal{E}(n, p)$.

Definition 1. For two map-germs $f, g \in \mathcal{E}(n, p)$, we say that f and g are *k*-jet equivalent if the all partial derivatives of order $\leq k$ at the origin of f and g are equal.

Definition 2. Two map-germs f and g are equivalent if f and g are contained in the same $L(n) \times L(p)$ -orbit.

Definition 3. For a map-germ $f \in \mathcal{E}(n, p)$ we say that f is *k*-determined if for any $g \in \mathcal{E}(n, p)$ which is *k*-jet equivalent to f, f and g are equivalent. A map-germ f is called *finitely determined* if there is some positive integer k such that f is *k*-determined.

J. Mather gave the following complete characterization of finitely determined map-germs.

Theorem [4]. A map-germ $f \in \mathcal{E}(n, p)$ is finitely determined if

and only if there is a positive integer k such that

 $tf(\theta(n)) + wf(\theta(p)) \supset \mathfrak{M}^k \theta(f)$

(see [4], [6] for the definitions of $\theta(f)$, $\theta(n)$, $\theta(p)$, $tf:\theta(n) \rightarrow \theta(f)$ and $wf:\theta(p) \rightarrow \theta(f)$).

However, in general it is difficult to check whether given mapgerm f is finitely determined or not (see [2], [3], [5]). On the other hand, from Mather's theorem we easily see that classification of finitely determined singularities of map-germs can be reduced to that of formal mappings. Thus, from now on we consider formal mappings.

Let $\hat{\mathfrak{M}}$ be the maximal ideal of formal power series algebra $K[[x_1, \dots, x_n]]$. By $\hat{\mathcal{E}}(n, p)$ we denote the set of all formal mappings $f = (f_1, \dots, f_p) : (K^n, 0) \to (K^p, 0)$. In the natural way we identify $\hat{\mathcal{E}}(n, p)$ with $\hat{\mathfrak{M}} \oplus \dots \oplus \hat{\mathfrak{M}}$ and we regard $\hat{\mathcal{E}}(n, p)$ as $K[[x_1, \dots, x_n]]$ -module. By

 $\hat{L}(n)$ (resp. $\hat{L}(p)$) we denote the group of formal diffeomorphisms $\varphi: (K^n, 0) \rightarrow (K^n, 0)$ (resp. $\psi: (K^p, 0) \rightarrow (K^p, 0)$). The group $\hat{L}(n) \times \hat{L}(p)$ acts on $\hat{\mathcal{C}}(n, p)$ in the same way as map-germs. And we define also k-determinacy and finite determinacy for formal mappings in the same way as for map-germs.

By H_i we denote the vector space spanned by the homogeneous polynomials of degree *i*. By $\mathcal{E}_i(n, p)$ we denote the vector space of homogeneous polynomial mappings of degree *i*, i.e.

$$\mathcal{E}_i(n,p) = \underbrace{H_i \oplus \cdots \oplus H_i}_{p}$$

and $\hat{\mathcal{E}}(n, p) = \mathcal{E}_1(n, p) \oplus \mathcal{E}_2(n, p) \oplus \mathcal{E}_3(n, p) \oplus \cdots$.

p

§ 3. Theorems. For a formal mapping $f \in \hat{\mathcal{E}}(n, p)$ we represent f as $f = f_{(k)} + f_{(k+1)} + f_{(k+2)} + \cdots$ where

 $f_{(i)} \in \mathcal{E}_i(n, p), \quad (i=k, k+1, k+2, \cdots).$

By $\hat{\mathfrak{M}}^2\langle \partial f_{(k)}/\partial x \rangle$ we denote the submodule $\hat{\mathfrak{M}}^2\langle \partial f_{(k)}/\partial x_1, \dots, \partial f_{(k)}/\partial x_n \rangle$ of $\hat{\mathcal{E}}(n, p)$. We set $B_i = \mathcal{E}_i(n, p) \cap \hat{\mathfrak{M}}^2\langle \partial f_{(k)}/\partial x \rangle$ and we denote by G_i the compliment linear subspace of B_i in $\mathcal{E}_i(n, p)$, $(i=k+1, k+2, k+3, \dots)$.

Theorem A (Normal form theorem). Let $f \in \hat{\mathcal{E}}(n, p)$ and B_i and G_i be as above. Then there exists a formal diffeomorphism $\varphi \in L(n)$ such that

$$f \circ \varphi = f_{(k)} + g_{(k+1)} + g_{(k+2)} + \cdots$$

where $g_{(i)} \in G_i$, $(i=k+1, k+2, \cdots)$.

Example 1 (Morse lemma). Suppose that $f \in \hat{\mathcal{E}}(n, 1)$ be in the form $f(x_1, \dots, x_n) = \pm x_1^2 \pm \dots \pm x_n^2 + \text{higher terms.}$ Then $\hat{\mathfrak{M}}^2 \langle \partial f_{(2)} / \partial x \rangle = \hat{\mathfrak{M}}^2 \langle x_1, \dots, x_n \rangle = \hat{\mathfrak{M}}^3$. Thus we have $B_i = H_i$ and $G_i = \{0\}, \ (i \ge 3)$. Therefore the normal form of $f(x_1, \dots, x_n)$ is $\pm x_1^2 \pm \dots \pm x_n^2$.

Example 2 (Splitting theorem). Suppose that $f \in \hat{\mathcal{E}}(n, 1)$ be in the form $f(x_1, \dots, x_n) = \pm x_{j+1}^2 \pm \dots \pm x_n^2 + \text{higher terms}$. Then we have

No. 9]

F. ICHIKAWA

 $\hat{\mathfrak{M}}^{2}\langle \partial f_{(2)}/\partial x \rangle = \hat{\mathfrak{M}}^{2}\langle x_{j+1}, \dots, x_{n} \rangle$. Thus, we can take the vector space spanned by homogeneous polynomials of degree *i* of variables x_{1}, \dots, x_{j} as $G_{i}, (i \geq 3)$. Therefore the normal form of $f(x_{1}, \dots, x_{n})$ is $g(x_{1}, \dots, x_{j}) \pm x_{j+1}^{2} \pm \dots \pm x_{n}^{2}$ where order of $g \geq 3$.

Now, from a variational corollary of above theorem and the classification of 2-jet we obtain the following theorem.

Theorem B (Generalized splitting theorem). For a formal mapping $f \in \hat{\mathcal{E}}(n, p)$ which Jacobian matrix has rank p-1, $(n \ge p)$, there exist formal diffeomorphisms $(\varphi, \psi) \in L(n) \times L(p)$ such that

(*) $\psi \circ f \circ \varphi = (x_1, \dots, x_{p-1}, x_1 x_p + \dots + x_i x_{p+i-1} + g(x_{i+1}, \dots, x_j) + Q_{j+1})$ where $Q_{j+1} = \pm x_{j+1}^2 \pm \dots \pm x_n^2$ and the second derivatives of g vanish and i, j are uniquely determined by the 2-jet of $f, (0 \le i \le p-1, p-1)$ $\le j \le n$ and $p+i-1 \le j$).

Example 3 (Whitney's fold singularity). In the above theorem we consider the simplest case i=0 and j=p-1. Then the normal form is given by $f = (x_1, \dots, x_{p-1}, g(x_1, \dots, x_{p-1}) + Q_p)$. By the action of L(p), f is equivalent to $(x_1, \dots, x_{p-1}, \pm x_p^2 \pm \dots \pm x_n^2)$ i.e. we have Whitney's fold singularity which is 2-determined.

Example 4 (Whithey's cusp singularity). In the case n=p=2 and i=1, j=2, the normal form is given by $f(x_1, x_2)=(x_1, x_1x_2+g(x_2))$. Then $f(x_1, x_2)$ is finitely determined if and only if $g(x_2) \neq 0$. When the order of $g(x_2)$ equals 3, it is easy to see that $f(x_1, x_2)$ is equivalent to Whitney's cusp singularity $(x_1, x_1x_2+x_2^3)$ which is 3-determined.

Theorem C. Let a formal mapping $f \in \hat{\mathcal{E}}(n, p)$ be in the form (*). We set $\tilde{f} = (x_1, \dots, x_{p-1}, x_1x_p + \dots + x_ix_{p+i-1} + g(x_{i+1}, \dots, x_j)) : (K^j, 0) \rightarrow (K^p, 0)$. Then $f \in \hat{\mathcal{E}}(n, p)$ is finitely determined if and only if $\tilde{f} \in \hat{\mathcal{E}}(j, p)$ is finitely determined.

References

- [1] T. Fukuda and H. Noguchi: Elementary Catastrophe Theory. Kyoritsu Press (1976) (in Japanese).
- [2] T. Gaffney: On the order of determination of a finitely determined germ. Invent. math., 37, 83-92 (1976).
- [3] ——: A note on the order of determination of a finitely determined germ. ibid., 52, 127-130 (1979).
- [4] J. Mather: Stability of C[∞]-mappings III, Finitely determined germs. Publ. Math. I.H.E.S., 35, 127-156 (1968).
- [5] A. A. du Plessis: On the determinacy of smooth map-germs. Invent. math., 58, 107-160 (1980).
- [6] C. T. C. Wall: Finite determinacy of smooth map-germs. Bull. London Math. Soc., 13, 481-539 (1981).
- [7] G. Wassermann: Stability of unfoldings. Lect. Notes in Math., vol. 393, Springer (1974).