119. Boundary Value Problems for Some Degenerate Elliptic Equations of Second Order

By Hirozo Okumura
Department of Applied Mathematics and Physics, Kyoto University (Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1983)

1. Let Ω be a bounded domain in R^{N} with C^{∞} boundary $\partial \Omega$ and $a^{i j}(x)=a^{j i}(x), b^{j}(x)$ and $c(x)$ be real valued functions belonging to $C^{\infty}(\bar{\Omega})$. In this note we shall consider the regularity up to the boundary of the solution for the following boundary value problem :
[P] $\quad A u=\sum_{i, j=1}^{N} a^{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{j=1}^{N} b^{j}(x) \frac{\partial u}{\partial x_{j}}+c(x) u=f(x) \quad$ in Ω,

$$
\left.u\right|_{\partial \Omega}=0,
$$

under the assumptions on A :
A1 $a_{2}(x, \xi)=\sum_{i, j=1}^{N} a^{i j}(x) \xi_{i} \xi_{j} \geqq 0 \quad$ for $(x, \xi) \in \bar{\Omega} \times\left(R^{N} \backslash\{0\}\right)$.
A2 $c(x)<0$ and $c^{*}(x)=c(x)-\sum_{j=1}^{N} \frac{\partial b^{j}}{\partial x_{j}}(x)+\sum_{i, j=1}^{N} \frac{\partial^{2} a^{i j}}{\partial x_{i} \partial x_{j}}(x)<0$ on $\bar{\Omega}$.
A3 $\partial \Omega$ is non-characteristic for A.
A4

$$
\begin{aligned}
& a_{1}^{s}(x, \xi)=\sum_{j=1}^{N}\left\{b^{j}(x)-\sum_{i=1}^{N} \frac{\partial a^{i j}}{\partial x_{i}}(x)\right\} \xi_{j} \neq 0 \\
& \quad \text { for }(x, \xi) \in \sum=\left\{(x, \xi) \in \bar{\Omega} \times\left(R^{N} \backslash\{0\}\right) \mid a_{2}(x, \xi)=0\right\} .
\end{aligned}
$$

Several existence, uniqueness and regularity theorems of the problem [P] were proved in Fichera [1], [2], Kohn-Nirenberg [4] and Oleinik [5], Oleinik-Radkevič [6]. In fact, it is known that there is a uniquely determined weak solution $u \in L^{2}(\Omega)$ of [P] with $f \in L^{2}(\Omega)$ if the conditions A1, A2 and A3 hold. Here $u \in L^{2}(\Omega)$ is called the weak solution of [P] with $f \in L^{2}(\Omega)$ if the identity
(1.1) $\int_{\Omega} u \overline{A^{t} v} d x=\int_{\Omega} f \bar{v} d x \quad$ holds for all $v \in C^{\infty}(\bar{\Omega})$ with $\left.v\right|_{\partial \Omega}=0$, where

$$
A^{t} v=\sum_{i, j=1}^{N} a^{i j}(x) \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}}-\sum_{j=1}^{N}\left\{b^{j}(x)-2 \sum_{i=1}^{N} \frac{\partial a^{i j}}{\partial x_{i}}(x)\right\} \frac{\partial v}{\partial x_{j}}+c^{*}(x) v
$$

Concerning the local regularity of this weak solution, we can apply Theorem 5.9 in Hörmander [3] to the operator A if the conditions A1 and A4 hold (see also Radkevič [7]). That is, if u is the weak solution of [P] with $f \in H^{k}(\Omega),{ }^{1}$ then we have $u \in H^{k+1}(U)$ for any open set U such that $\bar{U} \subset \Omega$. This is the reason why we consider the boundary value problem [P].

1) $H^{k}(\Omega)$ denotes the Sobolev space on Ω for non-negative integer k.

Theorem 1. Assume that the conditions A1, A2, A3 and A4 hold. Then the weak solution $u \in L^{2}(\Omega)$ of [P] with $f \in H^{k}(\Omega)$ belongs to $H^{k+1}(\Omega)$. In particular, if $f \in C^{\infty}(\bar{\Omega})$, then $u \in C^{\infty}(\bar{\Omega})$.

Remark. H. Yamada [8] proposed a sufficient condition for the weak solution $u \in L^{2}(\Omega)$ of [P] with $f \in C^{\infty}(\bar{\Omega})$ to be in $C^{\infty}(\bar{\Omega})$. But his condition is more restrictive than ours, i.e., strong ellipticity on $\partial \Omega$ is assumed besides A1, A2 and A3.

The author expresses his gratitude to Prof. Y. Ohya for his suggestions and to Dr. A. Matsumura for his encouragement.
2. Let x_{0} be any point on $\partial \Omega$. Since the boundary $\partial \Omega$ is noncharacteristic for A, we can choose a neighborhood U of x_{0} such that
(i) the boundary $\partial \Omega$ is described by the equation $\phi(x)=0$ in U, where $\nabla \phi \neq 0$ on $\partial \Omega$ and $\phi>0$ in Ω.
(ii) there are n independent C^{∞} functions $\theta_{1}, \cdots, \theta_{n}$, where $n=N-1$, such that $\sum_{i, j=1}^{N} a^{i j}(x)\left(\partial \phi / \partial x_{i}\right)\left(\partial \theta_{k} / \partial x_{j}\right)=0$ in U and $\theta_{k}\left(x_{0}\right)=0$ for $k=1,2, \cdots, n$.

Thus there exist a neighborhood V of $x_{0}(V \subset U)$ and a diffeomorphism ϕ of the form $y=\phi(x), x_{k}^{\prime}=\theta_{k}(x)$ for $k=1,2, \cdots, n$ such that
(i) the image of $V \cap \Omega$ under Φ is $Q_{\delta_{0}}=\left(0, \delta_{0}\right) \times B_{\delta_{0}}$, where $B_{\delta_{0}}$ $=\left\{x^{\prime} \in R^{n}| | x^{\prime} \mid<\delta_{0}\right\}$ with $\delta_{0}>0$, and the image of $V \cap \partial \Omega$ under Φ is $\{0\} \times B_{\delta_{0}}$.
(ii) the operator A is transformed into

$$
\begin{align*}
\alpha\left(y, x^{\prime}\right)\left\{\frac{\partial^{2}}{\partial y^{2}}+\sum_{i, j=1}^{n} s^{i j}\left(y, x^{\prime}\right) \frac{\partial^{2}}{\partial x_{i}^{\prime} \partial x_{j}^{\prime}}\right. & +\sum_{j=1}^{n} s^{j}\left(y, x^{\prime}\right) \frac{\partial}{\partial x_{j}^{\prime}} \tag{2.1}\\
& \left.+b\left(y, x^{\prime}\right) \frac{\partial}{\partial y}+c\left(y, x^{\prime}\right)\right\},
\end{align*}
$$

where $\alpha>0$ on $\overline{Q_{\delta_{0}}}, s^{i j}=s^{j i}$ and all the coefficients are real valued functions belonging to $C^{\infty}\left(\overline{Q_{\delta_{0}}}\right)$.

Of course, it suffices to consider $\alpha=1$. This coordinate transformation (we write x in place of x^{\prime}) reduces A1 and A4 to

$$
\begin{equation*}
S_{2}(y, x, \xi)=\sum_{i, j=1}^{n} s^{i j}(y, x) \xi_{i} \xi_{j} \geqq 0 \quad \text { for }(y, x, \xi) \in \overline{Q_{\delta_{0}}} \times\left(R^{n} \backslash\{0\}\right) \tag{2.2}
\end{equation*}
$$

and

$$
\begin{align*}
& S_{1}^{s}(y, x, \xi)=\sum_{j=1}^{n}\left\{s^{j}(y, x)-\sum_{i=1}^{n} \frac{\partial s^{i j}}{\partial x_{i}}(y, x)\right\} \xi_{j} \neq 0 \tag{2.3}\\
& \quad \text { for }(y, x, \xi) \in \sum_{\delta_{0}}=\left\{(y, x, \xi) \in \overline{Q_{\delta_{0}}} \times\left(R^{n} \backslash\{0\}\right) \mid S_{2}(y, x, \xi)=0\right\} .
\end{align*}
$$

Set $C_{(0)}^{\infty}\left([0, \delta) \times B_{\delta}\right)=\left\{u \mid u\right.$ is a restriction of $w \in C_{0}^{\infty}\left((-\delta, \delta) \times B_{\delta}\right)$ to $\left.[0, \delta) \times B_{\delta}\right\}$ for $\delta, 0<\delta \leqq \delta_{0}$. To prove Theorem 1 it is sufficient to show the following

Proposition. Assume that the conditions (2.2) and (2.3) hold and that $u \in L^{2}\left(Q_{\dot{\delta}_{0}}\right)$ and $f \in H^{k}\left(Q_{\delta_{0}}\right)$ satisfy the identity

$$
\begin{equation*}
\iint_{Q_{\delta_{0}}} u \overline{A^{t} v} d y d x=\iint_{Q_{\delta_{0}}} f \bar{v} d y d x \quad \text { for all } v \in C_{(0)}^{\infty}\left(\left[0, \delta_{0}\right) \times B_{\delta_{0}}\right) \tag{2.4}
\end{equation*}
$$

with

$$
v(0, x)=0
$$

Then there is a positive constant $\delta<\delta_{0}$ such that $u \in H^{k+1}\left(Q_{\delta}\right)$.
To show the proposition we prepare the following lemmas.
Set

$$
T_{r} u(y, x)=\frac{1}{(2 \pi)^{n}} \int_{R^{n}} e^{i x \cdot \xi}\left(1+|\xi|^{2}\right)^{r / 2} \hat{u}(y, \xi) d \xi
$$

for $u \in C_{(0)}^{\infty}\left([0, \delta) \times B_{\delta}\right)$ and $r \in R$, where $\hat{u}(y, \xi)$ is the Fourier transform of $u(y, x)$ with respect to x. Integration by parts gives

Lemma 1. Assume that the conditions (2.2) and (2.3) hold. If δ is sufficiently small, then for any $r \in R$, there is a constant C independent of u such that

$$
\begin{equation*}
\left\|T_{r} \frac{\partial^{2} u}{\partial y^{2}}\right\|_{0}+\left\|T_{r} S_{2}\left(y, x, \frac{\partial}{\partial x}\right) u\right\|_{0}+\left\|T_{r+1} u\right\|_{0} \leqq C\left(\left\|T_{r} A u\right\|_{0}+\left\|T_{r} u\right\|_{0}\right) \tag{2.5}
\end{equation*}
$$

for all $u \in C_{(0)}^{\infty}\left([0, \delta) \times B_{\delta}\right)$ with $u(0, x)=0$, where $\left\|\|_{0}\right.$ denotes the norm in $L^{2}\left(R_{+}^{n+1}\right)$.

Set

$$
S_{2}^{(l)}\left(y, x, \frac{\partial}{\partial x}\right)=\sum_{i=1}^{n} s^{i l}(y, x) \frac{\partial}{\partial x_{i}}
$$

and

$$
S_{2(l)}\left(y, x, \frac{\partial}{\partial x}\right)=\sum_{i, j=1}^{n} \frac{\partial s^{i j}}{\partial x_{l}}(y, x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}
$$

for $l=1,2, \cdots, n$. A sharp form of Gårding's inequality gives
Lemma 2. Assume that the condition (2.2) holds. Then for any $r \in R$, there is a constant C independent of u such that

$$
\begin{align*}
& \sum_{l=1}^{n}\left\|T_{r+(1 / 2)} S_{2}^{(l)}\left(y, x, \frac{\partial}{\partial x}\right) u\right\|_{0}+\sum_{l=1}^{n}\left\|T_{r-(1 / 2)} S_{2(l)}\left(y, x, \frac{\partial}{\partial x}\right) u\right\|_{0} \tag{2.6}\\
& \quad \leqq C\left(\left\|T_{r} S_{2}\left(y, x, \frac{\partial}{\partial x}\right) u\right\|_{0}+\left\|T_{r+1} u\right\|_{0}\right)
\end{align*}
$$

for all $u \in C_{(0)}^{\infty}\left([0, \delta) \times B_{\dot{\delta}}\right)$.
Once Lemmas 1 and 2 have been proved, the analogous reasoning to Hörmander [3] gives the proposition.
3. We shall remark on the boundary value problem of Neumann type. Let Ω be a bounded domain in $R_{+}^{2}=\left\{(y, x) \in R^{2} \mid y>0\right\}$ with C^{∞} boundary $\partial \Omega$. For simplicity we shall assume that in a neighborhood U of the origin the boundary $\partial \Omega$ is described by the equation $y=\psi(x)$ with $\psi(x) \geqq 0$ and $\psi(0)=0$ and that the boundary $\partial \Omega$ doesn't touch the x axis outside of U. Let's consider the following boundary value problem :
$\left[\mathrm{P}^{\prime}\right] \quad(A-\alpha) u=\frac{\partial^{2} u}{\partial y^{2}}+y \frac{\partial^{2} u}{\partial x^{2}}+c \frac{\partial u}{\partial x}-\alpha u=f \quad$ in Ω,

$$
\left.\partial_{\nu} u\right|_{\partial \Omega}=n_{1} \frac{\partial u}{\partial y}+\left.n_{2} y \frac{\partial u}{\partial x}\right|_{\partial \Omega}=0 \quad \text { with a positive constant } \alpha,
$$

where c is a nonzero real constant and $n=\left(n_{1}, n_{2}\right)$ is the unit inner normal vector to $\partial \Omega$ (∂_{ν} denotes the conormal derivative corresponding to A).

We obtain

Theorem 2. There is a constant $\alpha_{0}>0$ such that we have a weak solution $u \in L^{2}(\Omega)$ of $\left[\mathrm{P}^{\prime}\right]$ with $f \in L^{2}(\Omega)$ if $\alpha>\alpha_{0}$. Moreover any weak solution $u \in L^{2}(\Omega)$ of $\left[\mathrm{P}^{\prime}\right]$ with $f \in H^{k}(\Omega)$ belongs to $H^{k+1}(\Omega)$. In particular, if $f \in C^{\infty}(\bar{\Omega})$, then $u \in C^{\infty}(\bar{\Omega})$.

Here $u \in L^{2}(\Omega)$ is called a weak solution of [P^{\prime}] with $f \in L^{2}(\Omega)$ if the identity

$$
\begin{equation*}
\iint_{\Omega} u \overline{(A-\alpha)^{t} v} d y d x=\iint_{\Omega} f \bar{v} d y d x \quad \text { holds for all } v \in C^{\infty}(\bar{\Omega}) \tag{3.1}
\end{equation*}
$$

with

$$
\left.\left(\partial_{\nu}-c n_{2}\right) v\right|_{\partial \Omega}=0
$$

References

[1] G. Fichera: Sulle equazioni differenziali lineari ellittico-paraboliche del secondo ordine. Atti Accad. Naz. Lincei, Mem., (8), 5, 1-30 (1956).
[2] -: On a unified theory of boundary value problems for elliptic-parabolic equations of second order. Boundary Value Problems in Differential Equations, Univ. of Wisconsin Press, Madison, pp. 97-120 (1960).
[3] L. Hörmander: A class of hypoelliptic pseudodifferential operators with double characteristics. Math. Ann., 217, 165-188 (1975).
[4] J. J. Kohn and L. Nirenberg: Degenerate elliptic-parabolic equations of second order. Comm. Pure Applied Math., 20, 797-872 (1967).
[5] O. A. Oleinik: A problem of Fichera. Dokl. Acad. Nauk SSSR, 157, 12971300 (1964) ; Soviet Math. Dokl., 5, 1129-1133 (1964) (English transl.).
[6] O. A. Oleinik and E. V. Radkevič: Second Order Equations with Nonnegative Characteristic Form. Moscow (1971); Amer. Math. Soc. (1973) (English transl.).
[7] E. V. Radkevič: A priori estimates and hypoelliptic operators with multiple characteristics. Dokl. Acad. Nauk SSSR, 187, 274-277 (1969) ; Soviet Math. Dokl., 10, 849-853 (1969) (English transl.).
[8] H. Yamada: On the first boundary value problems for some degenerate second order elliptic differential equations. Kodai Math. J., 3, 341-357 (1980).

