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1. Introduction. The purpose of this note is to generalize the
result obtained in [1]. To be more precise we shall present an
obstruction to the existence of a K/ihler metric of constant scalar cur-
vature in any fixed Khler class of a compact complex manifold M
with b(M)=O.

Let o=(i/2) gdz/dz be a Khler form of M, ’=-(i/2z)
05 log det (go) the Ricci form of (o, and r, the harmonic part ot ’-o.
Then there exists a real valued smooth function F, uniquely deter-
mined up to any constant function, such that

++/-
2

We denote by I)(M) the complex Lie algebra of all holomorphic
vector fields of M. We define a linear unctionf o (M) into C by

f(X) [ XF(o

where m-- dim M.
Theorem 1. Let M be a compact complex manifold with b(M}

=0 admitting Kihlerian structures. Then the function f depends
only on the Kihler class [o] e H(M R). If M admits a Kihler form
e [(o] of constant scalar curvature, then f=0.
Theorem 2. The function f is invariant under the group G of

all holomorphic transformations of M preserving the class [o]. In
particular the derived algebra of (M) is contained in the kernel of f
and f is a Lie algebra homomorphism. If (M) is semisimple then

f=0. If f:/:O then (M) contains a hyperplane invariant under G.
If the first Chern class c(M) is positive, any Khler form of con-

stant scalar curvature in c(M) is Einstein. So the result of this paper
generalizes that of [1].

We remark that f, actually varies as does this can be observed
by considering a product of two compact Kiihler manifolds M, with
the Kiihler iorm , i--1, 2, such that f,,=/==O and taking Khler forms
w-kw+ k.o, on M: M for positive parameters k and k..

2. Proof. Fix a Khler form w0. Any Khler form o cohomolo-
gous to (o0 can be joined by a smooth family of Kiihler forms (o=wo
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+t(i/2=) aO, q being a real valued smooth function of M. There
exists a smooth family , of smooth functions of M, uniquely deter-
mined up to any M-constant functions of t, such that

dt 2
From now on we shall omit the suffix t for the notational convenience.

Lemma . /O-g"gq.r#=O where r=(i/2) r.dz"dz.
Proof. Differentiating the equation 5"=0 with respect to t, we

obtain
(-gg.r) O.

Since 5".=0 also implies that

g"grrr=0,

the proof of the lemma is immediate.
Lemma 4. If b(M)=0, then for each X e (M) there exists a

smooth function such that X="(8/Sz").
Proof. Let be the (0, D-form dual to X. Then =0. Since

b,(M)=0 there exists a smooth function such that =, which is
the desired function.

Proof of Theorem 1. To prove the first part we need only to

show that the derivative of the function XF., of t vanishes identi-
JM

cally. In fact one can calculate as in [1]
d IXF.=IX(g"-O)dt

0.
The proof of the second part of Theorem 1 is immediate from the fact
that harmonicity of implies that g"r. is constant.

The proof of Theorem 2 is quite similar to that of Theorem 2.1 in
[1], and is omitted.
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