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§ 1. Summary. The Toda equation

(1-1) q;=pn—1—pm p:L:pn(Qn_an)’ n=0y i"ly izy e
admits the special rational solution
1.2) q,=(log P,/P,.Y, p,=(ogP,.) —t/4
where

d(n) J(n)
(1.3) P,=3 (t—a,)=), P, ti™-%

k=1 j=0

are the polynomials of degree d(n)=n(rn—1)/2 with integral coefficients
P,o=1, P, ;(n#0, f(n)=I[n(n—1)/6]). These polynomials were intro-
duced by A.I. Yablongkii [1] and A. P. Vorobiev [2] who showed that
q, satisfies the Painlevé-II equation
1.9 a4 =2q;+tq,+n.
All zeros of P, are simple, P, and P,,, have no common zero. So ¢,
has n? simple poles and p, has n(n+1)/2 double poles.

A sharp estimate for the maximal modulus of these poles is ob-
tained. A,=max {|a,,|; 1<k<d(n)} satisfies
@a.5) nr<A,, ,<4n*? n=0,1,2, ...

§2. Recurrence relation. If we define the rational functions g,
and p, by the recurrence relation

(2-1) q0=07 Do= _t/49

2.2) G=Cn—=D/4p, 1 —Qu-1s  DPa=—Dn+ 0 +1/2),
(2-3) Qn=—"0ny D-2=Dn-1» n=1’ 2} 3’ e

then

Theorem 2.1. {q,, .} satisfies the Toda equation (1.1), q, satis-
fies the Painlevé-I1 equation (1.4) and p, satisfies
2.4) 0.0 — 7|2+ 4P+ tpr+ (2n+1)?/32=0
for every integral n.

§ 3. Yablonskii-Vorobiev’s polynomials. The rational func-
tions P, are determined uniquely by the relation

(3'1) pn=_PnPn+2/4P:+1) ’i’b=0, ily izy e
with initial condition
3.2) P,=P, =1.

Integrating the Toda equation with respect to n we have (1.2). So
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we have
Theorem 3.1 (A. P. Vorobiev [2]).
3.3 P,P,,,=tP;, ,+4P},—4P, P;...

Using (2.4) and (8.3) we can show

Theorem 3.2. P, are the polynomials with properties stated in
§1.

§ 4. Laurent expansion at co. The Laurent expansions at oo
for ¢, and p, are convergent in |t|>max{4,, 4,.,} and in [t|>A4,,,
respectivery. Inserting the expressions

“4.1) Gn=0,+nt 1= Z”: (—1)/q, b= C1+9,
=0
“4.2) Po=—D,—t/4= f: (—1)p, ;t=0+>
=0

into the Toda equation (1.1) we have a recurrence relation for the
coefficients which gives

Theorem 4.1.
4.3) Qn+1,52>9n,; >0, Dy =Pn-1,5=>0,

n=0’1’2,"" j=0,1,2""'

From these inequalities it follows
4.4 A,..>A,>A,=0, n=3,4,5, ---.

§ 5. Estimate from below for 4,. ,_, has a different expression
as Laurent series at .

d(n) o0 d(n)
(5.1) Dooy= kZ_l (t—a,) "= jZ=:0 G+1) kZ=11 aj t-9D,
Comparing this with (4.2) we have
d(n)
(5.2) Dn-1,3/Gi+1) = kZ=Jl (—a,,0)¥

where the righthand side does not exceed d(n)A% so we have
Theorem 5.1.

(503) An2(pn—l,j/(gj'l"l)d(n))l/sj, n=3’ 4» 5’ tt j=1’ 2’ 3’ ft .

Especially

5.9 A, >((n—2)n+1))",  n=3,4,5, --.

Since we know that
(5.5 Du-11=20(n—1)(n(n—1)—2).

§ 6. Estimate from above for 4,. From the results of § 4
(6.1) 9,=—n"'tg,—1,  D,=1+44t"'p,

can be expressed as a convergent power series of (—%)-* with non

negative coefficients in |¢|>A4,.,. Rewriting the recurrence relation

(2.1) and (2.2) we have

(6 -2) ﬁ0=0’ ((jo=0),

6.3 14, =@n—1D,_;/ Q=D )—n—1)4,_;,
pn=4n2(’_t)_s(l‘l‘(jn)z—ﬁn—l, n=1, 29 3’ Tt

Estimating these recurrence relations inductively we have
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Theorem 6.1. Define

(6.4) T.(6)=(4n’p(0))"* where (@)= +6)0-'(1—6)"*
for any fixed 6 (0<6<1). Then we have

(6.5) A,..<T,0),

(6.6) [2,()|<20/(1—0), |D.(D)|<O for [¢t|>T,.0)

for any n>1,

Since min,.,., p(@)=¢(v'5 —2)=(11+5+5)/2 then the best result
is obtained when we choose §=+5 —2. Now we arrive at our main
theorem.

Theorem 6.2 (Main theorem).

6.7 (n(n+3)"'<A,.,<Q2A1+5v5))"n*, n=1,2,3, ---.
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