101. Microlocal Study of Sheaves. II Constructible Sheaves

By Masaki KASHIWARA*) and Pierre SCHAPIRA**)

(Communicated by Heisuke HIRONAKA, M. J. A., Oct. 12, 1983)

Introduction. On a real (resp. complex) analytic manifold X, we prove that a complex of sheaves is constructible if and only if it satisfies some finiteness property and if its micro-support [5] is a subanalytic (resp. complex analytic) Lagrangian set. Thus we may study the functorial properties, including contact transformations [6], with our previous results on the micro-support of sheaves. As an application we give a direct image theorem for regular holonomic modules in the non proper case.

1. Let X be a real analytic manifold. We use the same notations as in [6]. In particular SS(F) is the micro-support in T^*X of a complex of sheaves on X. In this note we shall only consider sheaves of vector spaces, in order to simplify the discussion.

Let F be a complex of sheaves on X. We shall say that F is weakly *R*-constructible if there exists a subanalytic stratification such that the restriction of the cohomology groups of F to each stratum is locally constant. We denote by $D^+(X)$ the derived category of complexes of sheaves bounded from below and by $D^+_{wRc}(X)$ the full subcategory consisting of weakly *R*-constructible complexes.

Recall (cf. [2]) that a complex $F \in Ob(D^{\flat}(X))$ is said to be *R*-constructible if $F \in Ob(D^{+}_{wRc}(X))$ and moreover for all $x \in X$, the space $H^{j}(F)_{x}$ is finite-dimensional. We denote by $D^{\flat}_{R-c}(X)$ the full subcategory of $D^{+}_{wRc}(X)$ of *R*-constructible complexes.

Theorem 1.1. Let $F \in Ob(D^+(X))$. The following conditions are equivalent.

i) $F \in Ob(D_{wRc}^+(X)).$

ii) SS(F) is contained in a subanalytic and isotropic set of T^*X (isotropic: There exists a dense open smooth manifold in SS(F) on which the fundamental 1-form vanishes).

iii) SS(F) is a closed conic Lagrangian subanalytic set of T^*X . For the proof we use the technics of [1] and [5], [6].

As a corollary of Theorem 1.1 we prove that if Y is a submanifold of X and $F \in Ob(D_{R_c}^{b}(X))$ then $\nu_{Y}(F)$ the specialization of F along Y

^{*)} Research Institute for Mathematical Sciences, Kyoto University.

^{**)} Université de Paris-Nord.

belongs to $Ob(D^{b}_{Rc}(T_{Y}X))$ and $\mu_{Y}(F)$ the microlocalization of F along Y(cf. [7]) belongs to $Ob(D^{b}_{Rc}(T^{*}_{Y}X))$. Moreover if φ is an analytic contact transformation from $V \subset T^{*}Y$ to $U \subset T^{*}X$ and φ_{K} a quantized contact transformation over φ (cf [6]), then for $G \in Ob(D^{b}_{Rc}(Y))$ and $p \in U$, there exists $F \in Ob(D^{b}_{Rc}(X))$ such that $\varphi_{K}(G) \simeq F$ in $D^{+}(X, p)$.

2. Now we assume that X is a complex analytic manifold. We denote by $X^{\mathbb{R}}$ the underlying real manifold, but we often confuse X and $X^{\mathbb{R}}$. We define the category $D^+_{wCc}(X)$ and $D^b_{Cc}(X)$ as in the real case, but by considering now stratifications by complex manifolds.

Theorem 2.1. Let $F \in Ob(D^+(X))$. The following conditions are equivalent.

i) $F \in Ob(D^+_{wCc}(X)),$

ii) $F \in Ob(D^+_{wR_c}(X^R))$ and SS(F) is stable by the action of C^{\times} .

iii) SS(F) is contained in a closed conic isotropic subanalytic set of T^*X stable by the action of C^{\times} .

iv) SS(F) is a closed conic complex analytic Lagrangian subset of T^*X .

For a subset $A \subset X$, the conormal cone $N^*(A) \subset T^*X$ is defined in [9]. Let Y be another complex analytic manifold, f a holomorphic map from Y to X. We denote by ρ and $\tilde{\omega}$ the natural associated maps from $Y \times T^*X$ to T^*Y and T^*X , respectively.

Theorem 2.3. Let $(Y_s)_{s>0}$ be a family of open sets in Y^R , let $G \in Ob(D^b_{C_c}(Y))$ and assume:

i) $Y = \bigcup_{s} Y_{s}, \bigcup_{s'>s} Y_{s'} = Y_{s} \text{ and } \bigcap_{s'>s} Y_{s'} \subset \overline{Y}_{s}.$

ii) f is proper over Supp $(G) \cap \overline{Y}_s$ for all p.

iii) $N^*Y_s \cap \overline{SS(G) + \rho(Y \times T^*X)} \subset T^*_Y Y.$

Then $\mathbf{R}f_*(G)$ and $\mathbf{R}f_1(G)$ belong to $Ob(D^b_{Cc}(X))$. Moreover $SS(\mathbf{R}f_*(G))$ and $SS(\mathbf{R}f_1(G))$ are contained in $\tilde{\omega}\rho^{-1}(SS(G))$.

This theorem is easily deduced from Theorem 2.2 and our results in [5].

3. We still consider complex manifolds. Let \mathcal{D}_X denote the sheaf of finite-order holomorphic differential operators on X. For a map $f: Y \to X$ we also consider the $(\mathcal{D}_Y, f^{-1}\mathcal{D}_X)$ -bimodule $\mathcal{D}_{Y \to X} = \mathcal{O}_Y \otimes_{f^{-1}\mathcal{O}_X} f^{-1}\mathcal{D}_X$ (cf. [7]).

Let $D(\mathcal{D}_x)$ denote the derived category of the category of complexes of right \mathcal{D}_x -modules. We denote by $D^b_{coh}(\mathcal{D}_x)$ (resp. $D^b_{rh}(\mathcal{D}_x)$) the full subcategory of $D(\mathcal{D}_x)$ consisting of complexes whose cohomology is bounded and coherent (resp. bounded and regular holonomic, [3]).

We define two functors from $D^b_{coh}(\mathcal{D}_Y)$ to $D(\mathcal{D}_X)$ by setting for $\mathcal{N} \in Ob(D^b_{coh}(\mathcal{D}_Y))$

$$\int_{f} \mathcal{N} = \mathbf{R} f_{*}(\mathcal{N} \otimes_{\mathcal{D}_{Y}}^{\mathbf{L}} \mathcal{D}_{Y \to X})$$
$$\int_{f}^{pr} \mathcal{N} = \mathbf{R} f_{1}(\mathcal{N} \otimes_{\mathcal{D}_{Y}}^{\mathbf{L}} \mathcal{D}_{Y \to X}).$$

٨

Theorem 3.1. Let $(Y_s)_{s>0}$ be a family of open sets in Y^R and let $\mathcal{N} \in Ob(D^{\flat}_{rh}(\mathcal{D}_Y))$. We make the assumptions of Theorem 2.3 with Supp (G) replaced by Supp (\mathcal{N}) and SS (G) by Char (\mathcal{N}) (the characteristic variety of \mathcal{N}). Then $\int_f \mathcal{N}$ and $\int_f^{pr} \mathcal{N}$ belong to $Ob(D^{\flat}_{rh}(\mathcal{D}_X))$ and moreover:

Char
$$\left(\int_{f} \mathcal{N}\right) \subset \tilde{\omega} \rho^{-1}$$
(Char \mathcal{N}),
Char $\left(\int_{f}^{pr} \mathcal{N}\right) \subset \tilde{\omega} \rho^{-1}$ (Char \mathcal{N}),
 $\mathbf{R}f_{*}(\mathcal{N} \otimes_{\mathcal{D}_{Y}}^{L} \mathcal{O}_{Y}) = \left(\int_{f} \mathcal{N}\right) \otimes_{\mathcal{D}_{X}}^{L} \mathcal{O}_{X},$
 $\mathbf{R}f_{1}(\mathcal{N} \otimes_{\mathcal{D}_{Y}}^{L} \mathcal{O}_{Y}) = \left(\int_{f}^{pr} \mathcal{N}\right) \otimes_{\mathcal{D}_{X}}^{L} \mathcal{O}_{X}.$

This theorem follows easily from Theorem 2.3 and the results in [2].

Corollary 3.2. Let $f: Y \to X$ be a holomorphic map, with dim X = 1 and \mathcal{N} a regular holonomic \mathcal{D}_{Y} -Module. Let $x \in X$ and K a compact subset of $f^{-1}(x)$. Then there exists open neighborhoods U of x, V of K, with $V \subset f^{-1}(U)$ such that denoting by $f_{V}: V \to U$ the restriction of $f, \int_{f_{V}} (\mathcal{N}|_{V})$ and $\int_{f_{V}}^{pr} (\mathcal{N}|_{V})$ belong to $Ob(D^{b}_{rh}(\mathcal{D}_{U}))$ and that the conclusions of Theorem 3.1 are satisfied with f replaced by f_{V} .

References

- [1] M. Kashiwara: Publ. RIMS, Kyoto Univ., 10, 563-579 (1975).
- [2] ——: RIMS 437 (1983).
- [3] M. Kashiwara and T. Kawai: Publ. RIMS, Kyoto Univ., 17, 813-979 (1981).
- [4] M. Kashiwara and P. Schapira: Acta Math., 192, 1-55 (1979).
- [5] ----: C. R. Acad. Sc. Paris, 295, 487-490 (1982).
- [6] —: Microlocal study of sheaves. I. Proc. Japan Acad., 59A, 349-351 (1983).
- [7] M. Sato, T. Kawai, and M. Kashiwara: Lect. Notes in Math., vol. 287, Springer, pp. 265-529 (1973).