96. Some Dirichlet Series with Coefficients Related to Periods of Automorphic Eigenforms. II*

By Dennis A. Hejhal
Department of Mathematics, University of Minnesota
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 12, 1983)

§6. This paper is a direct continuation of [2]. Our primary objective here is to begin a discussion of several applications of the general formalism considered in §§ 2-5.
$\S 7$. We start by deriving some estimates for $F_{\mu}\left(\xi ; S^{ \pm 1}\right)$. Cf. Theorem 2. The basic procedure is that of analytic number theory. By examining appropriate combinations of the Mellin transforms mentioned in [2, p. 416 (line 5)] and applying (4.1), we quickly establish that

$$
\begin{equation*}
\left|F_{\mu}\left(\xi ; S^{ \pm 1}\right)\right|=O(1) e^{(\pi / 2+\delta)|t|} \tag{7.1}
\end{equation*}
$$

for $\xi=\sigma+i t,|\sigma| \leqq N,|t| \geqq 1, \delta>0$. The implied constant may depend on N, ϕ, δ. Compare [6, pp. 311, 313] and [15, p. 22 (line 12)]. We (can) now combine a Phragmén-Lindelöf argument with (4.1) and theorem 2(v). Cf. [5, p. 95]. This yields:

Theorem 3. Given $0<\varepsilon<1 / 100$ and $N \geqq 3$. Then:

$$
F_{\mu}\left(\xi ; S^{ \pm 1}\right)=O\left[\frac{1}{\varepsilon}|t|^{\max (0,3 / 2 /-2 \tau, 3 / 2+\epsilon-\sigma)}\right]
$$

for $\xi=\sigma+i t,|\sigma| \leqq N,|t| \geqq 1$. The implied constant depends solely on (Γ, N, S, ϕ).
§ 8. Take $T \geqq 2 x \geqq 2000$ and consider the integral

$$
\frac{1}{2 \pi i} \int_{\partial R} F_{\mu}(\xi ; S) \frac{(2 \pi x)^{\xi+1}}{\xi(\xi+1)} d \xi \quad \text { for } \mu=a, b
$$

with $R=[-\varepsilon, 3 / 2+\varepsilon] \times[-T, T]$. Cf. [5, p. 31]. The "horizontal" contribution is easily estimated using Theorem 3. The contribution from $\{\sigma=-\varepsilon\}$ is then handled using Theorem 2(v) and [15, p. 62 middle]. A typical component here reduces to

$$
\int_{1000}^{T} G(t) e^{i F(t)} d t
$$

with $G(t)=t^{2 s-1 / 2}$ and $F(t)=-2 t \ln t+2 t+t \ln \left[\pi^{2} x \mid S^{-1}\left[m_{0}\right]\right]$. The result in [15] is applied to [$\left.T 2^{-k-1}, T 2^{-k}\right]$ for $k \leqq \log _{2} T$. Each interval of this type splits into $O(1)$ "admissible" subintervals. We conclude that:

$$
\frac{1}{2 \pi i} \int_{-\star-i T}^{-\epsilon+i T} F_{\mu}(\xi ; S) \frac{(2 \pi x)^{\xi+1}}{\xi(\xi+1)} d \xi=O\left[\frac{x^{1-\epsilon}}{\varepsilon} T^{2 t} \ln T\right] .
$$

*) Supported in part by NSF Grant MCS 78-27377.

Once this estimate is obtained, the rest is easy. Compare [3, pp. 103112].

Set:

$$
\begin{aligned}
& N_{a}(x)=\sum_{\substack{\left\langle n_{0}\right)}} \frac{E\left[n_{0}\right]}{W\left[n_{0}\right]} \quad N_{b}(x)=\sum_{\substack{\left[n_{0}\right]}} I\left[n_{0}\right] \\
& N_{a 1}(x)=\int_{1}^{x} N_{a}(u) d u \quad N_{b 1}(x)=\int_{1}^{x} N_{b}(u) d u .
\end{aligned}
$$

Theorem 4. For $x \geqq 1000$ and $\omega=\delta_{m 0} \int_{\mathscr{F}} \phi(z) d \mu(z)$, we have:

$$
\begin{array}{ll}
N_{a}(x)=\frac{2}{3} \frac{\omega}{\sqrt{q r}} x^{3 / 2}+O\left[x^{3 / 4} \ln x\right] & N_{a 1}(x)=\frac{4}{15} \frac{\omega}{\sqrt{q r}} x^{5 / 2}+O\left[x(\ln x)^{2}\right] \\
N_{b}(x)=\frac{2 \pi}{3} \frac{\omega}{\sqrt{q r}} x^{3 / 2}+O\left[x^{3 / 4} \ln x\right] & N_{b 1}(x)=\frac{4 \pi}{15} \frac{\omega}{\sqrt{q r}} x^{5 / 2}+O\left[x(\ln x)^{2}\right]
\end{array}
$$

The implied constants depend solely on (Γ, S, ϕ). To formulate the S^{-1} analog, replace $(q r)^{1 / 2}$ by $(q r)^{-1 / 2}$.

This result is a natural extension of the classical Gauss-Siegel theorem. Cf. [13] and [11, pp. 44-45].
§9. Continuing onward: note that the behavior of $\theta_{m}(z ; \tau ; S)$ with respect to τ can be studied by imitating the development in [14, pp. 85-88, 113-116]. This type of manipulation has become very common in recent years. Cf. [9, p. 455], [10, p. 338], [12, p. 95]. The trick is to examine theta functions with characteristic ; viz.

$$
\begin{equation*}
\theta_{m}(z ; \tau ; b ; S)=\sum_{n \in \mathbb{Z}} f\left[\mathscr{W}\left(\mathcal{M}_{z}^{-1}\right)(n+b)\right] \tag{9.1}
\end{equation*}
$$

where $f(X)=\left(\sqrt{q} x_{2}-i \sqrt{r} x_{3}\right)^{R} e^{\pi i X t\left[u S+i v S_{1}\right] X}$ and $b \in Z \times \frac{1}{q} Z \times \frac{1}{r} Z$.
Write:

$$
\begin{aligned}
& \boldsymbol{G}_{\theta}=\left\{\left(\begin{array}{c}
a \\
c \\
c \\
d
\end{array}\right) \in S L(2, Z): a b \equiv c d \equiv O \bmod 2\right\} \\
& \left.\boldsymbol{G}_{\theta}(2 q r)=\left\{\begin{array}{c}
a \\
c \\
d
\end{array}\right) \in \boldsymbol{G}_{\theta}: c \equiv O \bmod 2 q r\right\} .
\end{aligned}
$$

Note that $\boldsymbol{G}_{\boldsymbol{\theta}}$ is just the classical theta group. Cf. [1, p. 17].
One finds that:

$$
\begin{align*}
& \theta_{m}(z ; \tau+2 ; S)=\theta_{m}(z ; \tau ; S) ; \\
& \theta_{m}(z ; L \tau ; S)=i^{N}(c \tau+d)^{1 / 2}(\overline{(c+d})^{R+1} \theta_{m}(z ; \tau ; S) \tag{9.2}
\end{align*}
$$

for $L=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in G_{\theta}(2 q r), c>0$, where

$$
i^{N}=\left(\frac{c}{|d|}\right)\left(\frac{2 q r}{|d|}\right) \overline{\eta(d)} \quad \text { and } \quad \eta(d)=\left\{\begin{array}{r}
1 \text { if } d \equiv 1 \bmod 4 \tag{9.3}\\
-i \text { if } d \equiv 3 \bmod 4
\end{array}\right\} .
$$

The proof uses Poisson summation and well-known properties of Gauss sums.

The analogous result for $\theta_{m}(z ; A \tau ; S)$-where A is any element of \boldsymbol{G}_{θ}-will involve the $q r$ (inequivalent) functions (9.1). There is no need to write down an exact expression for the coefficients. Compare [14, pp. 87, 114] and [9, 10, 12, loc. cit.].
§10. Let

$$
\begin{equation*}
\left.\Omega_{\theta}(\tau)=v^{R / 2+3 / 4} \int_{\mathscr{F}} \phi(z) \overline{\theta_{m}(z ; \tau ; S}\right) d \mu(z) \tag{10.1}
\end{equation*}
$$

Cf. Theorem 1 (after correcting the obvious misprint).
In this section we examine $\Omega_{\theta}(\tau)$ from the point-of-view of [4, chap. 9].

First of all: observe that
(10.2) $\Omega_{\phi}(\tau)=\omega v^{R / 2+3 / 4}$

$$
\begin{gathered}
+\sum_{\substack{\left[n_{0}\right] \\
S\left[n_{0}\right]>0}}(-1)^{m / 4} \pi \frac{E\left[n_{0}\right]}{W\left[n_{0}\right]} \Gamma(R+1) 2^{-R} t^{R / 2}(2 \pi t)^{(s-R-1) / 2} v^{s / 2+1 / 4} \\
\quad \times \Psi\left[\frac{s+R+1}{2} ; s+\frac{1}{2} ; 2 \pi v t\right] e^{-\pi i t t} \\
+\sum_{\substack{\left.\left.\left[n_{0}\right]\right\} \\
\\
n_{0}\right]<0}} \sqrt{\pi} I\left[n_{0}\right]|t|^{R / 2}(2 \pi \mid t)^{(s-R-1) / 2} v^{s / 2+1 / 4} \\
\quad \times \Psi\left[\frac{s-R}{2} ; s+\frac{1}{2} ; 2 \pi v|t|\right] e^{\pi i \tau|t|}
\end{gathered}
$$

Note that the individual terms are invariant under $s \longleftrightarrow 1-s$.
By applying [4, pp.348, 420(19)] we immediately see that $\Omega_{\phi}(\tau)$ satisfies
(10.3)

$$
\Delta_{l} f+s(1-s) f=0 \quad \text { on } H \quad\{c f .(3.1)\}
$$

with $l=1 / 2+R$ and $s=s / 2+1 / 4$. In addition: (9.2) and (9.3) show that (10.4) $\quad \Omega_{\phi}(L \tau)=Ч(L) \Omega_{\phi}(\tau) j_{L}(\tau ; l) \quad$ for $L \in \boldsymbol{G}_{\theta}(2 q r)$.

Script Q is used to denote THAT multiplier system of weight l on $\boldsymbol{G}_{\theta}(2 q r)$ which satisfies:
(10.5) $U\left[\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)\right]=1$

$$
\mathcal{U}\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right]=\left(\frac{c}{|d|}\right)\left(\frac{2 q r}{|d|}\right) \eta(d) \quad \text { for } \quad\left(\begin{array}{ll}
a & b \\
c & b
\end{array}\right) \in \boldsymbol{G}_{\theta}(2 q r), \quad c>0 .
$$

As usual $j_{\sigma}(z ; l)=\exp [i \operatorname{Arg}(\gamma z+\delta)]$ for $\sigma=\left(\begin{array}{c}\alpha \\ \gamma \\ \beta\end{array}\right) \in S L(2, R)$. By employing the equation mentioned in §9 paragraph 4, we can now study the behavior of $\Omega_{\phi}(\tau)$ as τ approaches the various cusps of $\boldsymbol{G}_{\theta}(2 q r)$.

In this way: we ultimately arrive at
Theorem 5. Define $\mathcal{F}[s(1-s), l, \mathcal{U}]$ as in [4, pp. 486-7]. Compare [7, p.297]. Let $A_{0}[s(1-s), l, \downarrow]$ be the associated subspace of cusp forms. Then:
(i) $\Omega_{\phi}(\tau) \in A_{0}[s(1-s), l, Q]$ for $\omega=0$;
(ii) $\Omega_{\phi}(\tau) \in \mathscr{F}\left[\frac{3}{4}\left(1-\frac{3}{4}\right), \frac{1}{2}, \mathscr{G}\right]$ for $\omega \neq 0$.

Case (ii) can be pushed a bit further by using the orthogonal decomposition mentioned in [8, pp. 290, 302]. In this regard see also the $\boldsymbol{G}_{\theta}(2 q r)$ analog of [4, p. 532(line 9)] and [8, p. 305 top].

Theorem 5 is a natural extension of [12, pp. 101, 107]. With regard to the holomorphic case : recall [2, p. 416] and note that

$$
\left\{\begin{array}{c}
I(\theta)=\frac{e^{-i R \theta}(\sin \theta)^{R}}{\left(k^{-1}-k\right)^{R-1}} \int_{z_{1}}^{P_{z_{1}}} F(z)\left[c z^{2}+(d-a) z-b\right]^{R-1} d z \tag{10.6}\\
I\left[n_{0}\right]=\frac{(-1)^{m / 4}}{\left(k^{-1}-k\right)^{R-1}} \int_{z_{1}}^{P_{z_{1}}} F(z)\left[c z^{2}+(d-a) z-b\right]^{R-1} d z
\end{array}\right\}
$$

where $P=Q a(k) Q^{-1}, R=$ even and positive, and $z_{1} \in H$.

References

[1] R. Gunning: Lectures on Modular Forms. Princeton Univ. Press (1962).
[2] D. A. Hejhal: Some Dirichlet series with coefficients related to periods of automorphic eigenforms. Proc. Japan Acad., 58A, 413-417 (1982).
[3] -: The Selberg Trace Formula for $\operatorname{PSL}(2, R)$. vol. 1. Springer Lect. Notes, vol. 548 (1976).
[4] -: ditto., vol. 2 (to appear in the Springer Lect. Note series) (1983).
[5] A. E. Ingham: The Distribution of Prime Numbers. Cambridge Univ. Press (1932).
[6] H. Maass: Über die räumliche Verteilung der Punkte in Gittern mit indefiniter Metrik. Math. Ann., 138, 287-315 (1959).
[7] W. Roelcke: Das Eigenwertproblem der automorphen Formen in der hyperbolischen Ebene I. ibid., 167, 292-337 (1966).
[8] -: ditto. II. ibid., 168, 261-324 (1967).
[9] G. Shimura: On modular forms of half integral weight. Annals of Math., 97, 440-481 (1973).
[10] -: The arithmetic of certain zeta functions and automorphic forms on orthogonal groups. ibid., 111, 313-375 (1980).
[11] T. Shintani: On zeta-functions associated with the vector space of quadratic forms. J. Fac. Sci. Univ. Tokyo, 22, 25-65 (1975).
[12] -: On construction of holomorphic cusp forms of half integral weight. Nagoya Math. J., 58, 83-126 (1975).
[13] C. L. Siegel: The average measure of quadratic forms with given determinant and signature. Annals of Math., 45, 667-685 (1944).
[14] -: Gesammelte Abhandlungen. vol. 3, Springer-Verlag (1966).
[15] E. C. Titchmarsh: The Theory of the Riemann Zeta-Function. Oxford Univ. Press (1951).

