94. A Remàrk on Constructions of Certain Normed and Nonsingular Bilinear Maps

By Thomas Bier
Mathematisches Institut der Universität, Göttingen
(Communicated by Shokichi IyanagA, m. J. A., Sept. 12, 1983)

The following are classical problems of real algebra:
(1) For what triples (a, b, c) does there exist a real-bilinear map $f: \boldsymbol{R}^{a} \times \boldsymbol{R}^{b} \rightarrow \boldsymbol{R}^{c}$ with $\|f(x, y)\|=\|x\| \cdot\|y\|$ (so-called normed bilinear map)? (Here for $z \in \boldsymbol{R}^{d},\|z\|:=z_{1}^{2}+\cdots+z_{d}^{2}$.)
(2) For what triples (a, b, c) does there exist a real-bilinear map $f: \boldsymbol{R}^{a} \times \boldsymbol{R}^{b} \rightarrow \boldsymbol{R}^{c}$ with the property : $f(x, y)=0$ implies $x=0$ or $y=0$ (so-called nonsingular bilinear map)?

The purpose of this note is to announce that for some special cases, i. e. $b=c=2^{m}$ in problem (1) and $a=b=2^{m}$ in problem (2) these problems can be looked at in a way involving notions of graph-theory. In particular in problem (1) in the special case of $b=c=2^{m}$ normed bilinear maps with maximal a can be constructed by cocliques as in Theorem 1. It is hoped that the approach taken in this note may simplify the matrix calculations needed for (1) and may show a certain duality between problems (1) and (2).

Let $W=\boldsymbol{F}_{2}^{m}$ and $W^{*}=\operatorname{Hom}_{F_{2}}\left(W, \boldsymbol{F}_{2}\right)$ be dual m-dimensional vector spaces over the field \boldsymbol{F}_{2}. Let $V=W \times W^{*}$ be a $2 m$-dimensional vector space over \boldsymbol{F}_{2}. The elements $v \in V$ have a representation $v=(w, \lambda)$ with $w \in W, \lambda \in W^{*}$. One defines a quadratic form Q (of hyperbolic type) on V by setting $Q(v)=\lambda(w) \in \boldsymbol{F}_{2}$.

To each element $v \in V$ we associate a real $2^{m} \times 2^{m}$ matrix $M(v)$ in the following way: Rows and columns of $M(v)$ are indexed by some enumeration of the elements of W, and for $M(v)=\left(m_{x, y}\right)_{x, y \in W}$ we have $m_{x, y}=0$ for $y \neq x+w$ and $m_{x, x+w}=(-1)^{2(x)} . \quad M(v)$ can also be identified with a linear transformation of the real group ring $R[W]$ of W. This gives $M(v): \boldsymbol{R}[W] \rightarrow \boldsymbol{R}[W]$ as $M(v)\left(e_{x}\right)=(-1)^{2(x)} \cdot e_{x+w}$.

From this definition one finds the following formulas:
(1) $\quad M(v)$ is symmetric $\Longleftrightarrow Q(v)=0$
$M(v)$ is skew $\Longleftrightarrow Q(v)=1$
$M\left(v_{1}\right) M\left(v_{2}\right)=M\left(v_{2}\right) M\left(v_{1}\right) \Longleftrightarrow Q\left(v_{1}+v_{2}\right)+Q\left(v_{1}\right)+Q\left(v_{2}\right)=0$
$M\left(v_{1}\right) M\left(v_{2}\right)=-M\left(v_{2}\right) M\left(v_{1}\right) \Longleftrightarrow Q\left(v_{1}+v_{2}\right)+Q\left(v_{1}\right)+Q\left(v_{2}\right)=1$
$M(0)=$ identity-matrix.
The relations (1) give motivation to introduce the following graphs:
$V^{+}(2 m)$ has as vertices all elements of V and $\left\{v_{1}, v_{2}\right\}, v_{1} \neq v_{2}$ is an edge iff $Q\left(v_{1}+v_{2}\right)=0$.

Alt $+(2 m)$ has as vertices all elements a of V with $Q(a)=1$ and $\left\{a_{1}, a_{2}\right\}, a_{1} \neq a_{2}$ is an edge iff $Q\left(a_{1}+a_{2}\right)=0$.

These graphs give an elementary but useful setting for looking at the above mentioned problems in certain special cases.

Recall that a coclique in a graph is a set of vertices which are mutually non-connected.

Theorem 1. Let $C \subset \mathrm{Alt}^{+}(2 m)$ be a coclique with $|C|=k$ elements, $C=\left\{a_{1}, \cdots, a_{k}\right\}$ say. Then the bilinear map $f: \boldsymbol{R}^{k+1} \times \boldsymbol{R}^{2 m} \rightarrow \boldsymbol{R}^{2 m}$ defined by $f\left(e_{0}, x\right)=M(0) x=x, f\left(e_{i}, x\right)=M\left(a_{i}\right) x$ for $i=1, \cdots, k$ is normed (e_{0}, \cdots, e_{k} are the canonical basis of R^{k+1}).

Let A be the point-point $0-1$ incidence matrix of the graph Alt ${ }^{+}(2 m)$, i.e. rows and columns of A are indexed by points of Alt ${ }^{+}(2 m)$, and for $A=\left(\alpha_{a, b}\right)_{a, b \in \operatorname{Alt}+(2 m)}$ we have

$$
\alpha_{a, b}= \begin{cases}1 & \{a, b\} \text { edge } \\ 0 & \{a, b\} \text { non-edge } \\ 0 & a=b\end{cases}
$$

For $m>1$ it is well known that the symmetric matrix A has exactly three eigenvalues, $k>r>s$ say, cf. [3]. With an obvious extension of the above notation for group rings, let $\boldsymbol{R}[\operatorname{Alt}+(2 m)]$ have a canonical orthonormal basis $e_{a}, a \in \mathrm{Alt}^{+}(2 m)$ and regard $A: R\left[A l t^{+}(2 m)\right]$ $\rightarrow R\left[\right.$ Alt $\left.^{+}(2 m)\right]$. Let $R\left[\mathrm{Alt}^{+}(2 m)\right]=E_{0} \perp E_{1} \perp E_{2}$ be the decomposition of $R\left[\right.$ Alt ${ }^{+}(2 m)$] into the eigenspaces E_{0}, E_{1}, E_{2} belonging to k, r, s respectively. Denote by $P_{2}(a)$ the projections of e_{a} into E_{2}.

Recall (cf. [1]) that a set $B \subset$ Alt $^{+}(2 m)$ is a distributed set (with respect to the second eigenspace E_{2}) iff there exists a vector $e \in E_{2}$ with $\left\langle e, P_{2}(b)\right\rangle>0$ for $b \in B$ and $\left\langle e, P_{2}(a)\right\rangle<0$ for $a \in \mathrm{Alt}^{+}(2 m) \backslash B$.

Theorem 2, Let $B \subset$ Alt $^{+}(2 m)$ be a distributed set (with respect to the second eigenspace $\left.E_{2}\right), B=\left\{b_{1}, \cdots, b_{n}\right\}$ say. Then the bilinear $\operatorname{map} f: \boldsymbol{R}^{2 m} \times \boldsymbol{R}^{2 m} \rightarrow \boldsymbol{R}^{n+1}$ defined by $f_{0}(x, y)=\langle x, M(0) y\rangle=\langle x, y\rangle, f_{i}(x, y)$ $=\left\langle x, M\left(b_{i}\right) y\right\rangle$ for $i=1, \cdots, n$ is nonsingular.

Theorem 1 is due to J. Radon (cf. [2]). The proof consists of transforming the defining property of normed bilinear map into a system of matrix equations and using formulas (1) to observe that the $\left\{M(0), M\left(a_{1}\right), \cdots, M\left(a_{k}\right)\right\}$ form a set of solutions of this system whenever $\left\{a_{1}, \cdots, a_{k}\right\}$ is a coclique.

The proof of Theorem 2 is also completely elementary and uses certain 4×4-minors of real skew-symmetric square matrices of size $2^{m} \times 2^{m}$. A detailed proof of Theorem 2 will be given later.

Recently I obtained an analogous theorem to Theorem 2 for the graphs $V^{+}(2 m)$, and a related theorem for the complement of Alt ${ }^{+}(2 m)$ in $V^{+}(2 m)$.

References

[1] Bier, Th.: A distribution invariant for association schemes and strongly regular graphs (to appear in Linear Algebra and Its Applications).
[2] Eckmann, B.: Gruppentheoretischer Beweis des Satzes von HurwitzRadon über die Komposition quadratischer Formen. Comment. Math. Helv., 15, S. 358-367 (1942).
[3] Seidel, J. J.: On two-graphs, and Shult's characterization of symplectic and orthogonal geometries over $G F(2)$. T. H.-Report 73-WSK-O2, Technological University Eindhoven, Netherlands, Department of Mathematics (1973).

