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1. Introduction. In the recent works of Crandall and Pazy [2],
Evans [3], Kobayashi et al. [4], and Pavel [7] has been studied the
existence of an evolution operator associated with the time-dependent
evolution equation
(1) du®)/dt e A@R)Yu(t), s<t<T, wu(s)=u,
where 7>0, se[0,T), x € D(A(s)), and {A(t); 0<t<T} is a family of
(possibly multi-valued) nonlinear operators in a Banach space. The
purpose of this note is to discuss the convergence of nonlinear evo-
lution operators under more general conditions than those treated in
[3], [4] and [7]. Our result gives an extension to the time-dependent
case (1) of the convergence results for nonlinear semigroups due to
Brezis and Pazy [1], Miyadera and Kobayashi [6] and Watanabe [8].

2. Theorem. Let X be a Banach space with norm |-|. Let f
={A(); 0<t<T} be a family of nonlinear operators in X. We say
that /] is of class G(o, p, 9) if A satisfies the three conditions listed
below :

(I) There exist w e (— oo, ), a nondecreasing right-continuous
function p: [0, T1—[0, c0) with p(0)=0, and g € L'(0, T ; X) such that
(2) QA+ p—Apo) |[c—u|Sp|le—u—2Y|+ 2|2 —u+pv|

+2u(p(t—s)+|9@)—9(s)D
for any 2>0, >0, t, se[0, T1, [z, y] € A(?), and [u, v] € A(s).

(I1) Ift,el0,T], 2, e D(A(t,), t, } t and x,—x, then x € D(A(?)).

(III) Foreach se[0,T) and xz e D(A(s)), there exist sequences
{t3, {«7} and {f} such that s=61 <7< . - <th(y T, @7 € D(A(£D)),

BoWios ¢ AgDaep+er, 1SN,

tZ—tZ-l

. . N(n)

lim max (i —t;.)=0, lim > (ti—ti )le|=0,
k=1

lim a8 =2, lim t%,,=T,

. N pen

tim 3% [ 19@—gp|ds=0.

If 1 is of class G(o, p, 9) then it is verified by applying the argu-
ment of [4] that there exists an evolution operator U={U(,s);
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0<s<t< T} such that U(t, s) maps D(A(s)) into D(A(?)) for 0<s<t<T
and
(3) U, s)x—z|—|x—2|

gf (LU, x—2, ], +0|UE, )z —2|

+o(&—rD+[9()—g(r)|}dé

for every se[0,T), tel0,Tl, rel[0,T], e D(A(s)) and [z, wle A(r),
where [z, y]. =lim,,, (2 4+ 2y|—|2])/2 for 2, ye X. The evolution
operator U is constructed through the convergence of solutions (%) of
discrete schemes mentioned in condition (III), and hence for s ¢ [0, T)
and x € D(A(s)) the function u(t)=U(%, s)x gives a weak solution of (1)
in the sense of [4]. In this regard we say that U is an evolution
operator associated with 1.

Let {A™} be a sequence of operators in X and define the limit
operator Lim A™ of the sequence {A™} by the following : [#, y] € Lim A™
if and only if there is a sequence {[«™, y™]} such that [z™, y™] e A™ and
lim (&™—x|+|y™—y)=0.

Theorem. Let {A(t)} be of class G(w, p, 9) and let {A™(t)} of class
G(o™, p™, g™) for m=1. Let {U(t, s)} and {U™(, )} be evolution opera-
tors associated with {A®)} and {A™(t)}, respectively. Suppose that
Lim A™(t)D A(t) for every tel0,T], o™ Zw, p™({)—p(t) for every
tel0,T], g™—gin L0, T ; X) and g™(t)—9(t) for every t e [0, T]. Then
for every se[0,T), x ¢ D(A(s)) and 2™ € D(A™(s)) with x™—x, we have
(4) lim U™(¢, 8)a™=U(t, s)x
for s<t<T and the convergence is uniform on [s, T1 with respect to t.

3. Proof of Theorem. Lemma 1. i) Let 0<s<t, < .. <%,
<T and set 2,=t,—t,.,. Then

13
(5) |t—tk|—|s—tk|g%j (E—tei|—|E—tDdE  (s<t<T, 1<k<n).
% s
ii) (See [8].) For every h, 2, and § with 0<h<6, 0<h<2,

(6) o+ % j et M[(E— 84+ h)*-+ AETdE < e[ (E—3)+ ALV (£ 2 0).
Let ¢£>0 be fixed. Then there exist ¢, C([0,T]; X) and L, >0
such that r |9(t)—g.(8)|dt<e and
0

7 o(t—sD+]9.)—9.(8)|EL.,|t—s|+¢, &, 5[0, TD.

The core of the proof of our theorem is the following.

Lemma 2. Let se[0,T), e D(A(s)) and let {x} be a sequence
in X such that z™ e D(A™(s)) and x™—x. Then for x,e X, s<t,<t,
<<ty T [, vl € AG) ASESN), rels, 1), [u,vle A(r), tels, T]
and A, =t,—t,_, with 2, (0,1/@) Q<EkZN), we have
(8) limsup|U™{,s)x™—U(, s)x|

<2e%¢-9(x—u|+L,|s—r|+e)
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42181 A—2@) |2 —u|+ L, [t —7|+¢]
+2][8-: A=22) ' [€*~2((E—s— 1t + 1) + At —9))'"*
X (v]+L,+|9.0)—9g()D]
+2[[3 A= 2@) [ 208=1 Qe | 9.(E0) — 9@ |+ T — T -1 — XY D]
+2¢- [ 9,0~ 9@ dz,
where A=max, 2, and @=max {1, o}.

Proof. For eachie({l,2, -, N}choose a sequence {[z7, y7]} such
that [z, y*l1e A™(t,) and |2P—2x,|+ |y —y:|—0 as m—oco. Moreover
let {[u™, v™]} be any sequence such that [u™, v™] e A™(r) and |u™— u|
+|v™—v|—0 as m—oco. For simplicity in notation we use the follow-
ing functions:

pk(t)=|U(t, S)x_xkl"’Ls[t—tlcl"l'e, k—_‘O’ 1; 2, )
pkm(t)=|Um(t, s)xm—x,’c"[+L5\t—tk|+e, m=1a 2, Tty k=0’ 1’ 2, )
ak=ka_xk~1—2kyk|+Rklgs(tk)-g(tk)l, k=12, -,
b=|v|+L.+9.(N—9(M)|, a,=1/%—a,
and define q,(t) by
() =€z —u|+L.[s—7|+e)
+ nlic=1 a _li@)_l[l xo_‘ul‘i'leto—'rl'*' 5+Z;€=1 a;]
+ [Tk A= 2@)'[e*=2((t—s— 2351 2)*+ A(t—5))'/*b]
13
+eeo [ 19,0t
for k=1,2,8, ..., and t e[s, T]. We shall estimate p,(f) and py(t) by
induction on k. For the values p,(t) we demonstrate that

(9) PO =q:(®)
for k=1. First we have

P()=<e*=(x—ul+L,|s—r|+e)+(x,—u|+L.|t,—7|+e)
{1
t+ereat—s)b +e-0 [ 19.6)— 9@l de.
On the other hand, the inequalities (3), (5) and (7) together imply that

10) Do) S D) — e, j pu©de+ —21— j Der(O)dE

+ =9/ 2+ [ 10.0)— 9@ 5.
From this it follows that
A1) exp (e (t—s)Ip,(E)<pe(s) + 71- j exp [a(6— 8)Ip,.(8)dE

+ 1 —2.2)"'[exp [a;(t—s)]—1]a,
+[ exp lae— 9110, —9®) | dz.
On the other hand, condition (I) implies that
a2) p.&)Z|e—ul+L,|s—r|+e

+ ]_“'c=1 (1—215)_1”xo“u!+Lglto"7'|+5+Z§=1 a;+ (t.—1t)b].
Combining (11) with (12), we have
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(13)  exp [a,(t—38)Ip.(®)
< [ exp lee— e @ +a—ul+ L s+

150 Q= 2@ (| @y — |+ L, |ty — 7|4+ (E— t)b
+ 2kt a,+exp [a(t—8)]a,]

+ j exp [, (6—9)]|9.(5)—g(&)| d&.

Now suppose that (9) holds for k—1. Replacing p,_,(t) on the
right side of (13) with ¢,_,(¢) and then applying (6) with h=21, and §
=> %, 2, we infer that p.(¢) is bounded by ¢,(t). The proof of (9) is
thereby complete.

In a manner similar to the derivation of (9), we obtain
14) pr®=q@®)+ eIz —zx|+|u"—ul+ T |v™—v|]

+ T A—22) 2k |ap—a,
+ 1 A=20) [h (ar— 2 — Ay | — |2 — oo — 2]

4ot 3k j [om(&—tD—p(&—tD|+]9™E—g(®)
+lg™(t)—9(t)1dg
ey J Hom(&—=rD—p(§—rDI+|gmE)— 9(®)|

+lg™(r)—g(r)|1d¢.
Since
|U™(t, 9)x™—U(t, s)x|<| U™, s)a™ —ap|+| U@, 8)x—x,|+|ar— a4,

the estimates (9) and (14) together imply the desired estimate (8).

Remark. Suppose that

RUI—2A({t+2)DD(A(®)) for every t € [0, T) and 1>0 with t+21< T,
then the conclusion of the theorem holds without the assumption that
9™(t)—g(t) for every point ¢ € [0, T1.

The author would like to thank Prof. I. Miyadera, Dr. T.
Takahashi and T. Iwamiya for their kind advices.
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