89. Fourier-Mehler Transforms of Generalized Brownian Functionals*)

By Hui-Hsiung Kuo
Department of Mathematics, Louisiana State University
(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1983)

1. Generalized Brownian functionals. In the continuous embeddings $\mathcal{S} \subset L^{2}(\boldsymbol{R}) \subset \mathcal{S}^{*}, \mathcal{S}$ and \mathcal{S}^{*} are the nuclear spaces of rapidly decreasing functions and tempered distributions, respectively. Let μ be the white noise measure on \mathcal{S}^{*}, i.e. its characteristic functional is given by

$$
\int_{S^{*}} \exp [i\langle\dot{B}, \xi\rangle] d \mu(\dot{B})=\exp \left[-\|\xi\|^{2} / 2\right] \equiv C(\xi), \quad \xi \in \mathcal{S}
$$

where $\|\cdot\|$ is the $L^{2}(\boldsymbol{R})$-norm. Being motivated by the well-known Wiener-Ito decomposition of $L^{2}\left(\mathcal{S}^{*}\right)$, Hida [1], [3] has introduced the following space ($\left.L^{2}\right)^{-}$of generalized Brownian functionals :

$$
\left(L^{2}\right)^{-}=\sum_{n=0}^{\infty} \oplus K_{n}^{(-n)},
$$

where $K_{n}^{(-n)}$ consists of generalized multiple Wiener integrals [2]. An element φ in $K_{n}^{(-n)}$ is realized as a distribution on \boldsymbol{R}^{n} through the integral transform \mathcal{I} :

$$
\begin{aligned}
(\mathscr{I} \varphi)(\xi) & =\int_{S^{*}} \exp [i\langle\dot{B}, \xi\rangle] \varphi(\dot{B}) d \mu(\dot{B}) \\
& =i^{n} C(\xi) \int_{R^{n}} f\left(u_{1}, \cdots, u_{n}\right) \xi\left(u_{1}\right) \cdots \xi\left(u_{n}\right) d u_{1} \cdots d u_{n}, \quad \xi \in \mathcal{S}
\end{aligned}
$$

where f is in the Sobolev space $\hat{H}^{-(n+1) / 2}\left(\boldsymbol{R}^{n}\right)$.
2. Renormalization. Let T be a finite interval in R. By using the renormalization procedure, we obtain the following three generalized Brownian functionals :

1) $\varphi(\dot{B})=: \exp \left[\lambda \dot{B}(t)+c \int_{T} \dot{B}(u)^{2} d u\right]:, t \in T, \lambda, c \in C, c \neq 1 / 2$. The \mathcal{I}-transform of φ is given by

$$
(\mathscr{I} \varphi)(\xi)=C(\xi) \exp \left[\frac{i \lambda}{1-2 c} \xi(t)+\frac{c}{2 c-1} \int_{T} \xi(u)^{2} d u\right], \quad \xi \in \mathcal{S}
$$

2) $\psi(\dot{B})=: H_{n}\left(\dot{B}(t) ; \frac{1}{(1-2 c) d t}\right) \exp \left[c \int_{T} \dot{B}(u)^{2} d u\right]:, c \in C, c \neq 1 / 2$.

The \mathcal{I}-transform of ψ is given by

$$
(\mathscr{I} \psi)(\xi)=\frac{1}{n!} C(\xi)\left(\frac{i \xi(t)}{1-2 c}\right)^{n} \exp \left[\frac{c}{2 c-1} \int_{T} \hat{\xi}(u)^{2} d u\right], \quad \xi \in \mathcal{S}
$$

[^0]3) $\sigma(\dot{b}, \dot{B})=: \exp \left[\beta \int_{T} \dot{b}(u) \dot{B}(u) d u+c \int_{T} \dot{b}(u)^{2} d u\right]: \dot{b}$, the renormalization with respect to \dot{b}-variable, $\beta, c \in C, c \neq 1 / 2$. The $\mathscr{I}_{\dot{b}}$-transform of σ is given by
$\left(\mathscr{I}_{\dot{b}} \sigma\right)(\eta)=C(\eta) \exp \left[\frac{i \beta}{1-2 c} \int_{T} \dot{B}(u) \eta(u) d u+\frac{c}{2 c-1} \int_{T} \eta(u)^{2} d u\right], \quad \eta \in \mathcal{S}$.
3. Main results. Theorem 1 (Generating function).
\[

$$
\begin{aligned}
: \exp [\lambda \dot{B}(t)+c & \left.\int_{T} \dot{B}(u)^{2} d u\right]:=\sum_{n=0}^{\infty} \lambda^{n}: H_{n}\left(\dot{B}(t) ; \frac{1}{(1-2 c) d t}\right) \\
& \times \exp \left[c \int_{T} \dot{B}(u)^{2} d u\right]:, t \in T, \lambda, c \in C, c \neq 1 / 2
\end{aligned}
$$
\]

Let K_{τ} denote the kernel function

$$
K_{\imath}(\dot{b}, \dot{B})=: \exp \left[\frac{i}{\sin \tau} \int_{T} \dot{b}(u) \dot{B}(u) d u-\frac{i}{2 \tan \tau} \int_{T} \dot{b}(u)^{2} d u\right]: \dot{b}, \quad \tau \in \boldsymbol{R} .
$$

For φ in $\left(L^{2}\right)^{-}$, we define the Fourier-Mehler transform $\mathcal{G}_{\imath} \varphi$ of φ by:

$$
\left(\mathcal{G}_{\tau} \varphi\right)(\dot{b})=\int_{S^{*}} K_{\imath}(\dot{b}, \dot{B}) \varphi(\dot{B}) d \mu(\dot{B})
$$

The Fourier-Mehler transform \mathcal{G}_{τ} is a map from $\left(L^{2}\right)^{-}$into itself. When $\tau=3 \pi / 2$, it is the Fourier transform introduced in [4, p. 423]. When $\tau=\pi / 2$, it is the inverse Fourier transform.

Theorem 2. Let $\Phi(\dot{B})=: \exp \left[\lambda \dot{B}(t)-\frac{1}{2} \int_{T} \dot{B}(u)^{2} d u\right]:, t \in T, \lambda \in \boldsymbol{R}$.
Then its Fourier-Mehler transform is

$$
\left(\mathcal{G}_{\tau} \Phi\right)(\dot{b})=: \exp \left[\lambda e^{\left.i_{\tau} \dot{b}(t)-\frac{1}{2} \int_{T} \dot{b}(u)^{2} d u\right]:}\right.
$$

Theorem 3. Let $\Phi_{n}(\dot{B})=: H_{n}\left(\dot{B}(t) ; \frac{1}{2 d t}\right) \exp \left[-\frac{1}{2} \int_{T} \dot{B}(u)^{2} d u\right]:$, $t \in T$. Then its Fourier-Mehler transform is

$$
\left(\mathcal{G}_{\tau} \Phi_{n}\right)(\dot{b})=e^{i n \tau}: H_{n}\left(\dot{b}(t) ; \frac{1}{2 d t}\right) \exp \left[-\frac{1}{2} \int_{T} \dot{b}(u)^{2} d u\right]: .
$$

It follows from Theorem 3 that $\left\{\mathcal{G}_{\tau} ; \tau \in R\right\}$ is a one-parameter group acting on the space $\left(L^{2}\right)^{-}$of generalized Brownian functionals. Moreover, we can define an arbitrary power of the Fourier transform $\wedge[4]$ by $(\wedge)^{r}=\mathcal{G}_{3 \pi r / 2}$.
4. Remarks. Consider the one-dimensional Fourier transform from $L^{2}(\boldsymbol{R})$ into itself. Let $h_{n}(x)$ be the normalized Hermite function of degree n. Then its Fourier transform is given by $\hat{h}_{n}=e^{3 \pi i n / 2} h_{n}$. This is the motivation for N. Wiener to define the Fourier-Mehler transform $\mathcal{G}_{\theta}[7 ; 3, \mathrm{p} .260]$ such that $\left(\mathcal{G}_{\theta} h_{n}\right)(y)=e^{i n \theta} h_{n}(y)$.

In Hida's theory of generalized Brownian functionals, $\{\dot{B}(t) ; t \in T\}$ is often regarded as a continuum coordinate system in order to take time propagation into account. Theorem 3 shows that the generalized Brownian functionals

$$
\psi_{n} \equiv: H_{n}\left(\dot{B}(t) ; \frac{1}{2 d t}\right) \exp \left[-\frac{1}{2} \int_{T} \dot{B}(u)^{2} d u\right]:,
$$

$n=0,1,2, \cdots$, are the infinite dimensional analogues of the Hermite functions. Moreover, $\left\{\psi_{n} ; n \geq 0\right\}$ forms a basis of the subspace of $\left(L^{2}\right)^{\wedge}$ spanned by what P. Lévy [6] called the normal functionals. More generally, $d \nu=\exp \left[c \int \dot{B}(u)^{2} d u\right] d \mu, c \neq 1 / 2$, can be regarded formally as a Gaussian measure on \mathcal{S}^{*} with variance $1 /(1-2 c)$. Then $\dot{B}(t)$ with respect to $d \nu$ is a Gaussian random variable with variance $1 /(1-2 c) d t$. Therefore,

$$
: H_{n}\left(\dot{B}(t) ; \frac{1}{(1-2 c) d t}\right) \exp \left[c \int B(u)^{2} d u\right]:
$$

is the Hermite function with respect to $d \nu$.
The detailed proofs of the above results and other formulas concerning Fourier and Fourier-Mehler transforms will appear in [5]. We are indebted to Prof. T. Hida for many helpful conversations.

References

[1] T. Hida: Analysis of Brownian functionals. Carleton Math. Lecture Notes, no. 13, Carleton University, Ottawa (1975).
[2] --: Generalized multiple Wiener integrals. Proc. Japan Acad., 54A, 55-58 (1978).
[3] -_: Brownian motion. Application of Math., vol. 11, Springer-Verlag (1980).
[4] H.-H. Kuo: On Fourier transform of generalized Brownian functionals. J. Multivariate Analysis, 12, 415-431 (1982).
[5] -: On Fourier transform of generalized Brownian functionals II (to appear).
[6] P. Lévy: Problèmes concrets d'analyse fonctionnelle. Gauthier-Villars (1951).
[7] N. Wiener: Hermite polynomials and Fourier analysis. J. Math. and Phys., 8, 70-73 (1928-29).

[^0]: *) Research supported by NSF grant MCS-8100728.

