89. Fourier-Mehler Transforms of Generalized Brownian Functionals^{*)}

By Hui-Hsiung Kuo

Department of Mathematics, Louisiana State University (Communicated by Kôsaku YOSIDA, M. J. A., Sept. 12, 1983)

1. Generalized Brownian functionals. In the continuous embeddings $\mathcal{S} \subset L^2(\mathbb{R}) \subset \mathcal{S}^*$, \mathcal{S} and \mathcal{S}^* are the nuclear spaces of rapidly decreasing functions and tempered distributions, respectively. Let μ be the white noise measure on \mathcal{S}^* , i.e. its characteristic functional is given by

$$\int_{\mathcal{S}^*} \exp\left[i\langle \dot{B},\xi\rangle\right] d\mu(\dot{B}) = \exp\left[-\|\xi\|^2/2\right] \equiv C(\xi), \qquad \xi \in \mathcal{S},$$

where $\|\cdot\|$ is the $L^2(\mathbf{R})$ -norm. Being motivated by the well-known Wiener-Ito decomposition of $L^2(\mathcal{S}^*)$, Hida [1], [3] has introduced the following space $(L^2)^-$ of generalized Brownian functionals:

$$(L^2)^-=\sum_{n=0}^{\infty}\oplus K_n^{(-n)},$$

where $K_n^{(-n)}$ consists of generalized multiple Wiener integrals [2]. An element φ in $K_n^{(-n)}$ is realized as a distribution on \mathbb{R}^n through the integral transform \mathcal{I} :

$$(\mathcal{I}\varphi)(\xi) = \int_{\mathcal{S}^*} \exp\left[i\langle \dot{B}, \xi\rangle\right] \varphi(\dot{B}) d\mu(\dot{B})$$

= $i^n C(\xi) \int_{\mathbb{R}^n} f(u_1, \cdots, u_n) \xi(u_1) \cdots \xi(u_n) du_1 \cdots du_n, \quad \xi \in \mathcal{S},$

where f is in the Sobolev space $\hat{H}^{-(n+1)/2}(\mathbf{R}^n)$.

2. Renormalization. Let T be a finite interval in R. By using the renormalization procedure, we obtain the following three generalized Brownian functionals:

1)
$$\varphi(\dot{B}) = :\exp\left[\lambda\dot{B}(t) + c\int_{T}\dot{B}(u)^{2}du\right]:, t \in T, \lambda, c \in C, c \neq 1/2.$$
 The \mathcal{I} -transform of φ is given by

$$(\mathscr{I}\varphi)(\xi) = C(\xi) \exp\left[\frac{i\lambda}{1-2c}\xi(t) + \frac{c}{2c-1}\int_{T}\xi(u)^{2}du\right], \quad \xi \in \mathcal{S}.$$
2) $\psi(\dot{B}) = :H_{n}\left(\dot{B}(t); \frac{1}{(1-2c)dt}\right) \exp\left[c\int_{T}\dot{B}(u)^{2}du\right]:, \ c \in C, \ c \neq 1/2.$

The \mathcal{T} -transform of ψ is given by

$$(\mathcal{T}\psi)(\xi) = \frac{1}{n!} C(\xi) \left(\frac{i\xi(t)}{1-2c}\right)^n \exp\left[\frac{c}{2c-1} \int_T \xi(u)^2 du\right], \qquad \xi \in \mathcal{S}.$$

⁹ Research supported by NSF grant MCS-8100728.

3) $\sigma(\dot{b}, \dot{B}) = :\exp\left[\beta \int_{T} \dot{b}(u)\dot{B}(u)du + c \int_{T} \dot{b}(u)^{2}du\right]:_{i}$, the renormalization with respect to \dot{b} -variable, $\beta, c \in C, c \neq 1/2$. The \mathcal{T}_{i} -transform of σ is given by

$$(\mathcal{T}_{i\sigma})(\eta) = C(\eta) \exp\left[\frac{i\beta}{1-2c} \int_{T} \dot{B}(u)\eta(u)du + \frac{c}{2c-1} \int_{T} \eta(u)^{2}du\right], \qquad \eta \in \mathcal{S}$$

3. Main results. Theorem 1 (Generating function). $:\exp\left[\lambda\dot{B}(t)+c\int_{T}\dot{B}(u)^{2}du\right]:=\sum_{n=0}^{\infty}\lambda^{n}:H_{n}\left(\dot{B}(t);\frac{1}{(1-2c)dt}\right)$ $\times\exp\left[c\int_{T}\dot{B}(u)^{2}du\right]:, t\in T, \lambda, c\in C, c\neq 1/2.$

Let K_{τ} denote the kernel function

$$K_{\tau}(\dot{b},\dot{B}) = :\exp\left[\frac{i}{\sin\tau}\int_{T}\dot{b}(u)\dot{B}(u)du - \frac{i}{2\tan\tau}\int_{T}\dot{b}(u)^{2}du\right]:;, \quad \tau \in \mathbb{R}.$$

For φ in $(L^2)^-$, we define the Fourier-Mehler transform $\mathcal{G}_{\varphi} \varphi$ by :

$$(\mathcal{G}_{\sigma}\varphi)(\dot{b}) = \int_{\mathcal{S}^*} K_{\sigma}(\dot{b}, \dot{B})\varphi(\dot{B})d\mu(\dot{B}).$$

The Fourier-Mehler transform \mathcal{G}_{τ} is a map from $(L^2)^{-1}$ into itself. When $\tau = 3\pi/2$, it is the Fourier transform introduced in [4, p. 423]. When $\tau = \pi/2$, it is the inverse Fourier transform.

Theorem 2. Let
$$\Phi(\dot{B}) = :\exp\left[\lambda\dot{B}(t) - \frac{1}{2}\int_{T}\dot{B}(u)^{2}du\right]:, t \in T, \lambda \in \mathbb{R}.$$

Then its Fourier-Mehler transform is

$$(\mathcal{G}_{\tau}\Phi)(\dot{b}) = :\exp\left[\lambda e^{i\tau}\dot{b}(t) - \frac{1}{2}\int_{T}\dot{b}(u)^{2}du\right]:.$$

Theorem 3. Let $\Phi_n(\dot{B}) = :H_n\left(\dot{B}(t); \frac{1}{2dt}\right) \exp\left[-\frac{1}{2}\int_T \dot{B}(u)^2 du\right]:,$

$$t \in T$$
. Then its Fourier-Mehler transform is

$$(\mathcal{G}_{n}\Phi_{n})(\dot{b})=e^{in\tau}:H_{n}\left(\dot{b}(t);\frac{1}{2dt}\right)\exp\left[-\frac{1}{2}\int_{T}\dot{b}(u)^{2}du\right]:.$$

It follows from Theorem 3 that $\{\mathcal{Q}_{\epsilon}; \tau \in \mathbf{R}\}$ is a one-parameter group acting on the space $(L^2)^-$ of generalized Brownian functionals. Moreover, we can define an arbitrary power of the Fourier transform \wedge [4] by $(\wedge)^r = \mathcal{Q}_{3\pi r/2}$.

4. Remarks. Consider the one-dimensional Fourier transform from $L^2(\mathbf{R})$ into itself. Let $h_n(x)$ be the normalized Hermite function of degree n. Then its Fourier transform is given by $\hat{h}_n = e^{3\pi i n/2} h_n$. This is the motivation for N. Wiener to define the Fourier-Mehler transform \mathcal{G}_{θ} [7; 3, p. 260] such that $(\mathcal{G}_{\theta}h_n)(y) = e^{in\theta}h_n(y)$.

In Hida's theory of generalized Brownian functionals, $\{B(t) ; t \in T\}$ is often regarded as a continuum coordinate system in order to take time propagation into account. Theorem 3 shows that the generalized Brownian functionals

No. 7]

[Vol. 59(A),

$$\psi_n \equiv :H_n\left(\dot{B}(t); \frac{1}{2dt}\right) \exp\left[-\frac{1}{2}\int_T \dot{B}(u)^2 du\right]:,$$

 $n=0, 1, 2, \cdots$, are the infinite dimensional analogues of the Hermite functions. Moreover, $\{\psi_n; n \ge 0\}$ forms a basis of the subspace of $(L^2)^-$ spanned by what P. Lévy [6] called the normal functionals. More generally, $d\nu = \exp\left[c\int \dot{B}(u)^2 du\right] d\mu$, $c \ne 1/2$, can be regarded formally as a Gaussian measure on S^* with variance 1/(1-2c). Then $\dot{B}(t)$ with respect to $d\nu$ is a Gaussian random variable with variance 1/(1-2c)dt. Therefore,

$$:H_n\left(\dot{B}(t);\frac{1}{(1-2c)dt}\right)\exp\left[c\int B(u)^2du\right]:$$

is the Hermite function with respect to $d\nu$.

The detailed proofs of the above results and other formulas concerning Fourier and Fourier-Mehler transforms will appear in [5]. We are indebted to Prof. T. Hida for many helpful conversations.

References

- T. Hida: Analysis of Brownian functionals. Carleton Math. Lecture Notes, no. 13, Carleton University, Ottawa (1975).
- [2] ——: Generalized multiple Wiener integrals. Proc. Japan Acad., 54A, 55-58 (1978).
- [3] ——: Brownian motion. Application of Math., vol. 11, Springer-Verlag (1980).
- [4] H.-H. Kuo: On Fourier transform of generalized Brownian functionals. J. Multivariate Analysis, 12, 415-431 (1982).
- [5] ——: On Fourier transform of generalized Brownian functionals II (to appear).
- [6] P. Lévy: Problèmes concrets d'analyse fonctionnelle. Gauthier-Villars (1951).
- [7] N. Wiener: Hermite polynomials and Fourier analysis. J. Math. and Phys., 8, 70-73 (1928-29).