86. Free Arrangements of Hyperplanes over an Arbitrary Field^{*)}

By Hiroaki TERAO

Department of Mathematics, International Christian University

(Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1983)

In [6], we proved a factorization theorem for the Poincaré polynomial of the complement of hyperplanes in an *l*-dimensional vector space over the complex number field C when the arrangement of the hyperplanes is free. That was called Shephard-Todd-Brieskorn theorem there. Our main aim here is to report a generalized factorization theorem for a free arrangement over an arbitrary field. The detailed proof will appear in [3].

1. Let A be an arrangement in an *l*-dimensional vector space V over a field K. In other words, A is a finite family of (l-1)-dimensional vector subspaces of V. Denote the dual vector space of V by V^* . Let $S = S(V^*)$ be the symmetric algebra of V^* . Fix a base $\{x_1, \dots, x_l\}$ for V^* , and S is isomorphic to the polynomial algebra $K[x_1, \dots, x_l]$. Let $Q \in S$ be a reduced defining equation for $\bigcup_{H \in A} H$. Then Q is a product of elements of V^* . The derivation of S is a K-linear map $\theta: S \to S$ satisfying $\theta|_{\kappa} \equiv 0$ and $\theta(fg) = f\theta(g) + g\theta(f)$ for any $f, g \in S$.

Definition 1. A derivation along A (which is called a logarithmic vector field [4] when we are in the complex analytic category) is a derivation θ of S satisfying

$\theta(Q) \in QS.$

Let D(A) denote the set of derivations along A. Then D(A) is naturally an S-module.

Definition 2. If D(A) is an S-free module, we say that A is a free arrangement.

Definition 3. A derivation θ of S is said to be homogeneous of degree b if $\theta(x_i) \in S_b$ $(i=1, \dots, l)$, where S_b is the vector subspace of S generated by monomials of degree b. We write $b = \deg \theta$. We can show that D(A) has a free base $\{\theta_1, \dots, \theta_l\}$ consisting of homogeneous derivations if A is a free arrangement. The integers $(\deg \theta_1, \dots, \deg \theta_l)$ are called *the degree* of A (called the generalized exponents of A in [6]). They depend only upon A.

The following useful criterion, proved by K. Saito [4] when K=C, remains true for arbitrary K:

^{*&#}x27; Partially supported by JMS research fellowship.

H. TERAO

Proposition 1. For homogeneous $\theta_1, \dots, \theta_l \in D(A)$, 1) $\theta_1 \wedge \dots \wedge \theta_l$ =: det $[\theta_i(x_j)]_{1 \leq i,j \leq l} \in QS$, 2) $\theta_1, \dots, \theta_l$ are a free base for D(A) if and only if $\theta_1 \wedge \dots \wedge \theta_l \in K^*Q$ ($K^* = K \setminus \{0\}$).

2. We will define combinatorial notions. Let $L(A) = \{\bigcap_{H \in B} H; B \subseteq A\}$. (Agree that $\bigcap_{H \in \phi} H = V$.) Introduce a partial order \geq by $X \geq Y$ iff $X \subseteq Y$. Then V is the minimal element. We simply write L instead of L(A).

Definition 4. The *Möbius function* μ on *L* is inductively defined by

$$\mu(V) = 1,$$

$$\mu(Y) = -\sum_{\substack{X < Y \\ X \in L}} \mu(X) \qquad (Y \in L).$$

The characteristic polynomial $\mathcal{X}(A, t) \in Q[t]$ for an arrangement A is defined by

$$\chi(A, t) = \sum_{X \in L} \mu(X) t^{\dim X}.$$

In [1], Orlik-Solomon showed that $(-t)^i \chi(A, t^{-1})$ equals the Poincaré polynomial $\sum_{i\geq 0} \dim H^i(M)t^i (M=V\setminus \bigcup_{H\in A} H)$ when K=C. Our main result is

Factorization theorem (see [6] when K=C). For a free arrangement A with its degrees (b_1, \dots, b_l) ,

$$\chi(A, t) = \prod_{i=1}^{l} (t - b_i).$$

Example 1. Let K=C. When A is the set of all reflecting hyperplanes of a finite unitary reflection group (over C), A is free. In this case, Factorization theorem was first proved by Orlik-Solomon [2].

Example 2. Let $K = F_q$ (a field with q elements). Let A be the arrangement consisting of all (l-1)-dimensional subspaces of V. Define

$$\theta_i = \sum_{j=1}^l x_j^{q^{i-1}} (\partial/\partial x_j) \qquad (i=1, \dots, l)$$

Let $\alpha = \sum_{j=1}^l c_j x_j \in V^*$. Then
 $\theta_i(\alpha) = \sum_{j=1}^l x_j^{q^{i-1}} c_j$
 $= (\sum_{j=1}^l c_j x_j)^{q^{i-1}} \in \alpha S.$

For each $H \in A$, fix an element $\alpha_H \in V^*$ such that $H = \ker(\alpha_H)$. Note that $\theta_i(\alpha_H) \in \alpha_H S$ ($H \in A$) by the argument above. Let $Q = \prod_{H \in A} \alpha_H$. $\theta_i(Q) = \sum_{H \in A} (Q/\alpha_H) \theta_i(\alpha_H) \in QS$.

Thus $\theta_1, \dots, \theta_l \in D(A)$. The determinant

$\theta_1 \wedge \cdots \wedge \theta_l =$	$ x_1 $	••	$\cdot x_{\iota}$
	x_1^q	• •	$\cdot x_l^q$
	$r^{q^{l-1}}$		$r^{q^{l-1}}$
	w_1		w

is not zero because the coefficient of $x_1 x_2^{q} \cdots x_l^{q^{l-1}}$ is 1. One also has $\sum_{i=1}^{l} \deg \theta_i = 1 + q + \cdots + q^{l-1}$ $= (q^l - 1)/(q - 1) = \#A = \deg Q.$ **Free Arrangements**

Thanks to Proposition 1, these imply that $\theta_1 \wedge \cdots \wedge \theta_l \in K^*Q$ and that $\theta_1, \dots, \theta_l$ are a free base for D(A). Thus A is free. In this case, by Factorization theorem, one has

$$\chi(A, t) = (t-1)(t-q)\cdots(t-q^{t-1}).$$

3. Fix $H_0 \in A$. Define
 $A' = A \setminus \{H_0\},$
 $A'' = \{H \cap H_0, H \in A'\}.$

The arrangement A'' is an arrangement in the (l-1)-dimensional vector space H_0 .

Addition-deletion theorem. Any two of the following three conditions imply the other one.

- (1) A is free with its degrees (b_1, \dots, b_l) ,
- (2) A' is free with its degrees $(b_1, \dots, b_{l-1}, b_l-1)$,

(3) A'' is free with its degrees (b_1, \dots, b_{l-1}) .

This was proved in [5] for K=R or C. The principle of our proofs for Factorization theorem and Addition-deletion theorem is essentially same as our proofs when K=C [6] [5]. In order to overcome the obstruction which appears when K is a finite field, the following lemma is crucial:

Lemma 1 (Stability of freeness under an algebraic field extension). Let A be an arrangement over K. Suppose that F is an algebraic field extension of K. Denote the corresponding arrangement in $V \otimes_{\kappa} F$ by A_F . Then the arrangement A_F over F is free if and only if the arrangement A over K is free.

By using Lemma 1, we can prove the following proposition, which is important in our proofs for the two theorems above, for an arbitrary field K:

Proposition 2. If A is free, then so is $A_x = :\{H \in A ; H \supseteq X\}$ for any $X \in L$.

Acknowledgment. This work was done during my stay at University of Wisconsin at Madison in 1982–83. I would like to express special thanks to Profs. P. Orlik and L. Solomon who made the stay possible and gave valuable suggestions.

References

- P. Orlik and L. Solomon: Combinatorics and topology of complements of hyperplanes. Invent. math., 56, 167-189 (1980).
- [2] ——: Unitary reflection groups and cohomology. ibid., 59, 77-94 (1980).
- [3] P. Orlik, L. Solomon, and H. Terao: Arrangements of hyperplanes (in preparation).
- [4] K. Saito: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo, Sect. IA, 27, 265-291 (1980).
- [5] H. Terao: Arrangements of hyperplanes and their freeness I. ibid., 27, 293-312 (1980).
- [6] ——: Generalized exponents of a free arrangement of hyperplanes and Shephard-Todd-Brieskorn formula. Invent. math., 63, 159–179 (1981).