84. S¹ Actions with Only Isolated Fixed Points on Almost Complex Manifolds

By Akio HATTORI

Department of Mathematics, University of Tokyo (Communicated by Kunihiko KODAIRA, M. J. A., Sept. 12, 1983)

1. The purpose of this note is to announce some results on S^1 actions having only isolated fixed points on an almost complex manifold admitting a quasi-ample complex line bundle. Details will appear elsewhere.

Let M be an oriented, connected, closed C^{∞} manifold on which a smooth action of S^1 is given such that its fixed points are all isolated. Then the fixed point set consists of exactly χ points $\{P_i\}$ where χ denotes the Euler number of M. Let E be a complex line bundle over M such that the given S^1 action can be lifted to an action on the line bundle E. We call such a line bundle admissible. If E is an admissible line bundle, then we fix a lifting of the action on E and consider the fiber E_{P_i} of E over a fixed point P_i . E_{P_i} is a complex S^1 -module so that it can be written in the form

(1.1)

$$E_{P_i} = t^{a_i}$$

where t denotes the standard 1 dimensional S^{i} -module. The integer a_{i} will be called the weight of E at P_{i} . We note that if we choose another lifting of action then the weights a_{i} are changed simultaneously to $a_{i}+a$ for some a. An admissible line bundle over an even dimensional manifold M will be called quasi-ample if the weights a_{i} are all different and

$$(c_1(E))^n[M] \neq 0$$
, dim $M = 2n$,

where $c_i(E)$ denotes the first Chern class of E.

Now we assume that M is an almost complex manifold and the action of S^1 preserves the almost complex structure. Such a manifold will be called almost complex S^1 -manifold. Then, restricting the complex tangent bundle TM to each fixed point P_i , we get an S^1 -module $TM \mid P_i = \sum t^{m_{ik}}$

$$TM | P_i = \sum_k t^m$$

where the m_{ik} are non-zero integers. These integers m_{ik} are called weights of M at P_i . Later we shall consider the following condition (D) relating a quasi-ample line bundle E and the tangent bundle:

(D) There exist integers $k_0 \ge 0$ and d such that the identity

$$\sum_{k} m_{ik} = k_0 a_i + d$$

holds for all i.

This condition is satisfied if the first Chern classes of M and E are related by the identity $c_1(M) = k_0 c_1(E)$.

In the sequel the rational function

(1.2)
$$\varphi_{i}(t) = \frac{\prod_{j \neq i} (1 - t^{a_{i} - a_{j}})}{\prod_{k} (1 - t^{m_{ik}})}$$

will play an important role.

2. Hereafter M will be an almost complex S^{i} -manifold of complex dimension n with only isolated fixed points. Our main results are stated as follows.

Proposition 2.1. The weights $\{m_{ik}\}$ at the fixed points $\{P_i\}$ satisfy the identity

$$\sum_{i} \prod_{k} \left(\frac{1}{1-t^{m_{ik}}} - \lambda \right) = \sum_{q=0}^{n} \rho_q (1-\lambda)^q (-\lambda)^{n-q}$$

where λ is an indeterminate and the integers ρ_q are defined in the following way. For each i we denote by p_i the number of k such that $m_{ik} > 0$. ρ_q is defined to be the number of i such that $p_i = q$. Moreover the equality $\rho_{n-q} = \rho_q$ holds for all q.

The above identity shows, in particular, that certain Chern numbers of the almost complex manifold M can be expressed by the integers ρ_q . For instance, putting $\lambda=0$, we see that $T[M]=\rho_n=\rho_0$ where T[M] is the Todd genus of the almost complex manifold M.

Corollary 2.2. If an almost complex manifold M admits an S^{i} action having only isolated fixed points, then the Todd genus must be non-negative. Moreover the weights $\{m_{ik}\}$ at the fixed points $\{P_i\}$ satisfy the following relation: For each integer m, the number of (i, k) such that $m_{ik} = m$ is equal to the number of (i, k) such that $m_{ik} = m$. In particular, we have $\sum_{i,k} m_{ik} = 0$.

Theorem 2.3. If there exists a quasi-ample line bundle E over M, then the inequality $n+1 \le \chi$ must hold. Moreover, there exist unique elements $r_0(t), \dots, r_{\chi^{-1}}(t)$ in $\mathbb{Z}[t, t^{-1}]$ such that the equalities

$$\varphi_i(t) = r_0(t) + r_1(t)t^{a_i} + \cdots + r_{\chi-1}(t)t^{(\chi-1)a_i}$$

hold for all *i*, where the $\varphi_i(t)$ are defined by (1.2) using the weights a_i of *E* at P_i . The function $r_0(t)$ is a constant r_0 and we have $r_0 = \rho_0 = \rho_n = T[X]$.

Theorem 2.4. Assume, in Theorem 2.3, the quasi-ample line bundle E satisfies the condition (D). Then the inequality $k_0 \le n+1$ holds. Moreover, setting $l_0 = \varkappa - k_0$, the $r_s(t)$ satisfy the relation

 $r_{l_0-s}(t) = (-1)^{\chi - (n+1)} r_s(t^{-1}) t^{-(l_0/\chi) \sum a_j}.$

In case $k_0 = 0$ we have $r_0 = 0$.

Corollary 2.5. If $c_1(M) = 0$, then we have T[M] = 0.

The following theorems may be thought of as analogues of Kobayashi-Ochiai's theorem in [2].

ds

Theorem 2.6. Let E be a quasi-ample line bundle over M satisfying the condition (D). If k_0 is equal to χ , then $k_0 = n+1 = \chi$ and the weights $\{m_{ik}\}$ at each fixed point P_i are given by

$$n_{ik}\} = \{a_i - a_j\}_{j \neq i}.$$

Moreover M is unitary cobordant to the n dimensional complex projective space CP^n . In particular we have T[M]=1. Furthermore we have $(c_1(E))^n[M]=1$.

Remark. A typical example of Theorem 2.6 is provided by linear S^{1} -actions on CP^{n} . The hyperplane bundle E is quasi-ample and satisfies the condition (D) with $k_{0} = n+1$.

Corollary 2.7. Suppose that the rational cohomology ring $H^*(M; \mathbf{Q})$ is isomorphic to that of $\mathbb{C}P^n$ and

$$c_1(M) = (n+1)x \mod torsion$$

for some $x \in H^2(X; \mathbb{Z})$, then the total Chern class of M is of the form $c(M) = (1+x)^{n+1} \mod torsion$

and we have $x^{n}[M] = 1$.

No. 7]

Theorem 2.8. Let E be a quasi-ample line bundle over M satisfying the condition (D). If $\chi = n+1$ and $k_0 = n$, then n is necessarily odd, and to each fixed point P_i there corresponds another fixed point $P_{i'}$ such that $a_i + a_{i'} = 0$ when the a_i are normalized to fulfill

$$\sum_{i=1}^{n+1}a_j=0.$$

Moreover the weights $\{m_{ik}\}$ at P_i are given by

$$m_{ik} = \{a_i - a_j\}_{j \neq i, i'} \cup \{a_i\}.$$

Furthermore M is unitary cobordant to the complex quadric Q_n . In particular we have T[M]=1 and $(c_1(E))^n[M]=2$.

Corollary 2.9. Suppose that the rational cohomology ring $H^*(M; Q)$ is isomorphic to that of $\mathbb{C}P^n$ and

$$c_1(M) = nx \mod torsion$$

for some $x \in H^{2}(M; \mathbb{Z})$, then n is necessarily odd and the total Chern class of M is of the form

$$c(M) = (1+x)^{n+2}(1+2x)^{-1}$$

and we have $x^{n}[M] = 2$.

Remark. A typical example of Theorem 2.8 is provided by linear S^{1} -actions on Q_{n} for odd n. Let E be a quasi-ample line bundle over M satisfying the condition (D) with $k_{0}=n$ and $\chi(M)=n+2$. With some additional condition we can determine the weights $\{m_{ik}\}$ which are completely similar to linear S^{1} -actions on Q_{n} for even n.

From Theorems 2.3 and 2.4 we have the inequalities $k_0 \le n+1 \le \chi$ for a quasi-ample line bundle E over an almost complex S^1 -manifold of complex dimension n having only isolated fixed points. Theorem 2.7 completely determines the weights at each fixed point in the most extreme case $k_0 = n+1 = \chi$. It is natural to ask what happens in case $k_0=n+1$ or $\chi=n+1$. In view of Kobayashi-Ochiai's theorem it might be conjectured that the same conclusion of Theorem 2.7 holds under a weaker assumption $k_0=n+1$. However, as actions on the Hirzebruch surfaces show, quasi-ampleness is a notion strictly weaker than ampleness. Thus the conjecture above would be a harzardous one. As to the other case $\chi=n+1$ we propose the following conjecture. Let M be an almost complex S^1 -manifold of complex dimension nhaving only isolated fixed points such that $\chi(M)=n+1$ and $T[M]\neq 0$. Let E be a quasi-ample line bundle over M satisfying the condition (D).

Conjecture 2.10. If $(c_1(E))^n[M] = 1$ then $k_0 = n+1$.

Theorem 2.11. Conjecture 2.10 is true for $n \leq 4$.

From Theorem 2.11 and Corollary 2.7 we deduce the following

Corollary 2.12. Suppose that M has the same integral cohomology ring as $\mathbb{C}P^n$ and that $T[M] \neq 0$. If $4 \leq n$, then the total Chern class of M is of the form

 $c(M) = (1+x)^{n+1}$

where x is a generator of $H^2(M; Z)$ such that $x^n[M] = 1$.

We conjecture that the conclusion of Corollary 2.12 holds for all n. T. Petrie [3] conjectured that if S^1 acts smoothly with only isolated fixed points on 2n dimensional closed manifold having the same cohomology ring as $\mathbb{C}P^n$ then the total Pontrjagin class of M was of the form

$p(M) = (1 + x^2)^{n+1}$.

The conjecture just stated above may be regarded as a complex version of Petrie's conjecture. Related materials can be found in [1].

References

- [1] A. Hattori: Spin^c-structures and S¹-actions. Invent. math., 48, 7-31 (1978).
- [2] S. Kobayashi and T. Ochiai: Characterizations of complex projective spaces and hyperquadrics. J. Math. Soc. Japan, 13, 31-47 (1972).
- [3] T. Petrie: Smooth S¹-actions on homotopy complex projective spaces and related topics. Bull. Amer. Math. Soc., 78, 105-153 (1972).