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1o The purpose of this note is to announce some results on S
actions having only isolated fixed points on an almost complex mani-
fold admitting a quasi-ample complex line bundle. Details will appear
elsewhere.

Let M be an oriented, connected, closed C manifold on which a
smooth action of S is given such that its fixed points are all isolated.
Then the fixed point set consists of exactly Z points (P} where ; denotes
the Euler number of M. Let E be a complex line bundle over M such
that the given S action can be lifted to an action on the line bundle
E. We call such a line bundle admissible. If E is an admissible line
bundle, then we fix a lifting of the action on E and consider the fiber
Ee, of E over a fixed point P. E is a complex S-module so that it
can be written in the form
(1.1) Ep,=ta’

where $ denotes the standard I dimensional S-module. The integer

a will be called the weight of E at P. We note that if we choose
another lifting of action then the weights a are changed simulta-
neously to aa for some a. An admissible line bundle over an even
dimensional manifold M will be called quasi-ample if the weights a
are all different and

(c(E))[M] =/= O, dim M--2n,
where c(E) denotes the first Chern class of E.

Now we assume that M is an almost complex manifold and the
action of S: preserves the almost complex structure. Such a manifold
will be called almost complex S-manifold. Then, restricting the
complex tangent bundle TM to each fixed point P, we get an S-module

TMIP= t

where the m are non-zero integers. These integers m are called
weights o17 M at P. Later we shall consider the following condition
(D) relating a quasi-ample line bundle E and the tangent bundle:
(D) There exist integers k0>_O and d such that the identity

m koa,+ d

holds for all i.
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This condition is satisfied if the first Chern classes of M ancl E are
related by the identity c(M)=koc(E).

In the sequel the rational function

(1.2) ?(t)- 1-[ (1-- t"-")
ll (1- t’9

will play an important role.
2. Hereafter M will be an almost complex S’-manifold of complex

dimension n with only isolated fixed points. Our main results are
stated as follows.

Proposition 2.1. The weights {m} at the fixed points {P} satisfy
the identity

( 1 pq(1-- )q(-- )n-q

where is an indeterminate and the integers pq are defined in the
following way. For each i we denote by p the number of k such that

mO. pq is defined to be the number of i such that p=q. Moreover
the equality Pn-q=Pq holds or all q.

The above identity shows, in particular, that certain Chern
numbers o the almost complex manifold M can be expressed by the
integers pq. For instance, putting =0, we see that T[M] =pn---po
where T[M] is the Todd genus of the almost complex manifold M.

Corollar 2.2. If an almost complex manifold M admits an S
action having only isolated fixed points, then the Todd genus must be
non-negative. Moreover the weights {m} at the fixed points {P}
satisfy the following relation" For each integer m, the number of
(i, k)such that m=m is equal to the number of (i, k) such that m
=-m. In particular, we have ,, m=0.

Theorem 2.). If there exists a quasi-ample line bundle E over
M, then the inequality n+l_<Z must hold. Moreover, there exist
unique elements to(t), ..., rz_(t) in Z[t, t -] such that the equalities

(t)=ro(t)+ r(t)ta’ + +r_()t(-)’
hold for all i, where the (t) are defined by (1.2) using the weights a
of E at P. The function ro(t) is a constant ro and we have ro=po=p

T[X].
Theorem 2.4. Assume, in Theorem 2.3, the quasi-ample line

bundle E satisfies the condition (D). Then the inequality ko<_n+l
kolds. Moreover, setting/0--Z-k0, the r(t) satisfy the relation

r0_ (t) (-- 1)- ( )r(t-)t-(o/) .
In case k0=0 we have r0=0.

Corollary7 2.5. If c(M)=0, then we have T[M]=0.
The ollowing theorems may be thought of as analogues of

Kobayashi-Ochiai’s theorem in [2].
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Theorem 2.6. Let E be a quasi-ample line bundle over M satis-
fying the condition (D). If ko is equal to , then ko--n+ l--; and the
weights {m} at each fixed point P are given by

{m}={a--a}.
Moreover M is unitary cobordant to the n dimensional complex pro-
]ective space CPn. In particular we have T[M]--1. Furthermore
we have (cl(E))n[M]- 1.

Remark. A typical example of Theorem 2.6 is provided by linear
S-actions on CPn. The hyperplane bundle E is quasi-ample and
satisfies the condition (D) with k0=n+ 1.

Corollary 2.7. Suppose that the rational cohomology ring
H*(M Q) is isomorphic to that of CP and

c(M) (n+ 1)x mod torsion

for some x e H(X Z), then the total Chern class of M is of the form
c(M)=(l+ x)/ mod torsion

and we have x[M]= 1.
Theorem 2.8. Let E be a quasi-ample line bundle over M saris-

lying the condition (D). If Z=n+l and ko=n, then n is necessarily
odd, and to each fixed point P there corresponds another fixed point
P, such that a+a,=0 when the a are normalized to fulfill

n+l

a=0.
i=l

Moreover the weights {m} at P are given by
{m}={a--a},,[J {a}.

Furthermore M is unitary cobordant to the complex quadric Q. In
particular we have T[M]= 1 and (cI(E))n[M]=2.

Corollary 2.9. Suppose that the rational cohomology ring
H*(M; Q) is isomorphic to that of CP and

c(M)=nx mod torsion
for some x e H2(M Z), then n is necessarily odd and the total Chern
class of M is of the form

c(M) (1 + x)/(1 +2x)-and we have x[M]=2.
Remark. A typical example of Theorem 2.8 is provided by linear

S-actions on Q for odd n. Let E be a quasi-ample line bundle over
M satisfying the condition (D) with ko=n and Z(M)=n+2. With
some additional condition we can determine the weights (m} which
are completely similar to linear S-actions on Q for even n.

From Theorems 2.3 and 2.4 we have the inequalities ko_n+1_
or a quasi-ample line bundle E over an almost complex S-manifold
of complex dimension n having only isolated fixed points. Theorem
2.7 completely determines the weights at each fixed point in the most
extreme case k0=n+l=. It is natural to ask what happens in case
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k0=n+ 1 or Z=n+ 1. In view of Kobayashi-Ochiai’s theorem it might
be conjectured that the same conclusion of Theorem 2.7 holds under
a weaker assumption k0=n+ 1. However, as actions on the Hirzebruch
surfaces show, quasi-ampleness is a notion strictly weaker than
ampleness. Thus the conjecture above would be a harzardous one.
As to the other case Z=n+l we propose the following conjecture.
Let M be an almost complex S-manifold of complex dimension n
having only isolated fixed points such that Z(M)=n+l and T[M]:/:0.
Let E be a quasi-ample line bundle over M satisfying the condition (D).

Conjecture 2.10. If.(c(E))[M]=l then k0=n+l.
Theorem 2.11. Conjecture 2.10 is true for n4.
From Theorem 2.11 and Corollary 2.7 we deduce the following
Corollary 2.12. Suppose that M has the same integral co-

homology ring as CP and that T[M]:/:0. If 4_n, then the total
Chern class of M is of the form

c(M) (1 + x)
where x is a generator of H(M Z) such that x[M]= 1.

We conjecture that the conclusion of Corollary 2.12 holds for all
n. T. Petrie [3] conjectured that, if S acts smoothly with only isolated
fixed points on 2n dimensional closed manifold having the same co-
homology ring as CP then the total Pontrjagin class of M was of
the form

p(M) (1+ x) /’.
The conjecture just stated above may be regarded as a complex ver-
sion of Petrie’s conjecture. Related materials can be found in [1].
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