78. On the Borel Summability of $\sum_{n=1}^{\infty} n^{-\alpha} \exp \left(i n^{\beta} \theta\right)$

By Minoru Akita and Takeshi Kano
Department of Mathematics, Faculty of Science, Okayama University
(Communicated by Shokichi Iyanaga, m. J. A., June 14, 1983)
0. In the previous paper [1] we proved that $\sum_{n=1}^{\infty} n^{-\alpha} \sin \left(n^{\beta} \theta\right)$ is convergent if $1<\beta<2 \alpha$. We now consider the Borel summability and apply a Tauberian theorem (cf. [2] Theorem 156) to show that this series converges for all $\theta>0$ when $\alpha=1 / 2, \beta<5 / 4$.

In fact we prove
Theorem (cf. [2] Notes, Chapter IX). If $\beta<\alpha+3 / 4$ then

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-\alpha} \exp \left(i n^{\beta} \theta\right) \quad\left(i^{2}=-1\right) \tag{1}
\end{equation*}
$$

is Borel summable for all $\theta>0$.
Corollary. If $\alpha \geqq 1 / 2$ and $1<\beta<5 / 4$, then (1) converges for all $\theta>0$.

1. Main lemma. For $1<\beta<3 / 2, \theta>0$ and positive integers m, set

$$
\begin{equation*}
F(t)=\left(\frac{\beta}{2}\right) \theta m^{\beta-2} t^{2}+\beta \theta m^{\beta-1} t=A t^{2}+B t, \quad \text { say. } \tag{2}
\end{equation*}
$$

Let μ be such that as $m \rightarrow \infty$,

$$
\begin{equation*}
\mu / m^{1 / 2+\delta} \longrightarrow 1 \quad\left(0<\delta<\frac{1}{2}-\frac{\beta}{3}\right) . \tag{3}
\end{equation*}
$$

Lemma.

$$
\begin{equation*}
\int_{-\mu}^{\mu} \frac{t}{m} \exp \left(-\frac{t^{2}}{2 m}\right) \sin (F(t)-2 k \pi t) d t=O\left(\frac{m^{-1 / 4+(3 / 2) \delta}}{\sqrt{|k-B / 2 \pi|}}\right) \tag{4}
\end{equation*}
$$

where k is a positive integer, and $B / 2 \pi \oplus Z$.
Proof. We write

$$
\text { (4) }=m^{-1}\left(\int_{-\mu}^{0}+\int_{0}^{\mu}\right)=m^{-1}\left(J_{1}+J_{2}\right), \quad \text { say. }
$$

We only consider J_{2} here since J_{1} similarly estimated.
By changing variable and by the second mean value theorem, we have

$$
J_{2}=\frac{1}{2 m} \int_{0}^{\xi} \sin (A u+(B-2 k \pi) \sqrt{u}) d u .
$$

Then by van der Corput's lemma (cf. [3] Lemma 4.4), we have

$$
J_{3}=O\left(m^{-1 / 4+(3 / 2) \delta} / \sqrt{\left.\left.k-\frac{B}{2 \pi} \right\rvert\,\right)}, \quad \text { where } \frac{B}{2 \pi} \notin Z\right.
$$

2. Sketch of proof of Theorem. We take Borel's integral method, that is, we consider

$$
\int_{0}^{\infty} e^{-x} \sum_{n=1}^{\infty} n^{-\alpha} \exp \left(i n^{\beta} \theta\right) \frac{x^{n}}{n!} d x .
$$

It suffices for the convergence to show that as $x \rightarrow+\infty$

$$
\begin{equation*}
e^{-x} \sum_{n=1}^{\infty} n^{-\alpha} \exp \left(i n^{\beta} \theta\right) \frac{x^{n}}{n!}=O\left(x^{-\nu}\right), \tag{5}
\end{equation*}
$$

for some constant $\nu>1$. Following the argument in [2] (Theorem 137 (9.1.6)), we consider

$$
\begin{equation*}
e^{-x} \sum_{r=-\mu}^{\mu}(m+r)^{-\alpha} \exp \left(i(m+r)^{\beta} \theta\right) \frac{x^{m+r}}{(m+r)!} . \tag{6}
\end{equation*}
$$

By the substitution $(m+r)^{-\alpha}=m^{-\alpha}\left(1-\alpha(r / m)+O\left(r^{2} / m^{2}\right)\right)$ and by a variant of Theorem 137 (9.1.8) of [2], we may obtain

$$
\begin{aligned}
(6)= & \frac{1}{\sqrt{2 \pi}} m^{-\alpha-1 / 2} \sum_{r=-\mu}^{\mu}\left(1+C_{1} \frac{r}{m}+C_{2} \frac{r^{3}}{m^{2}}+O\left(\frac{r^{4}}{m^{3}}+\frac{1}{m}\right)\right) \\
& \times \exp \left(-\frac{r^{2}}{2 m}+i(m+r)^{\beta} \theta\right),
\end{aligned}
$$

where C_{1} and C_{2} are bounded with respect to both m and r.
Since $m^{\beta-3} r^{3}$ is bounded because of (3), if we expand $\exp \left(i(m+r)^{\beta} \theta\right)$ $=\exp \left(i m^{\beta}(1+r / m)^{\beta} \theta\right)$, then we see that the main term in the expansion is

$$
\begin{equation*}
m^{-\alpha-1 / 2} \exp \left(i m^{\beta} \theta\right) \sum_{r=-\mu}^{\mu} \exp \left(-\frac{r^{2}}{2 m}+i \boldsymbol{F}(r)\right) . \tag{7}
\end{equation*}
$$

By the Euler summation formula,

$$
\begin{aligned}
(7)= & m^{-\alpha-1 / 2} \exp \left(i m^{\beta} \theta\right) \cdot\left[\int_{-\mu}^{\mu} \exp \left(-\frac{t^{2}}{2 m}+i F(t)\right) d t\right. \\
& +\int_{-\mu}^{\mu} \phi(t)\left(\exp \left(-\frac{t^{2}}{2 m}+i F(t)\right)\right)^{\prime} d t \\
& \left.+\frac{1}{2}\left(\exp \left(-\frac{\mu^{2}}{2 m}+i F(-\mu)\right)+\exp \left(-\frac{\mu^{2}}{2 m}+i F(\mu)\right)\right)\right] \\
= & (8)+(9)+\frac{1}{2}[(10)+(11)], \quad \text { say },
\end{aligned}
$$

where $\phi(t)=-\sum_{k=1}^{\infty} \sin (2 k \pi t) / k \pi$, and both of (10) and (11) are $O\left(m^{-r}\right)$ for any $\gamma>1$ due to (3).

Integration by parts then will show that for some $\gamma>1$

$$
\begin{equation*}
m^{-\alpha-1 / 2} \exp \left(i m^{\beta} \theta\right) \int_{-\mu}^{\mu} \exp \left(-\frac{t^{2}}{2 m}\right)_{\sin }^{\cos } F(t) d t=O\left(m^{-\jmath}\right) . \tag{12}
\end{equation*}
$$

Now we estimate (9). It is sufficient to consider

$$
\begin{equation*}
m^{-\alpha-1 / 2} \exp \left(i m^{\beta} \theta\right) \int_{-\mu}^{\mu} \phi(t)\left[\exp \left(-\frac{t^{2}}{2 m}\right)_{\sin }^{\cos } F(t)\right]^{\prime} d t . \tag{13}
\end{equation*}
$$

After term by term integration, we can write the integral in (13)
as

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{1}{k \pi} \int_{-\mu}^{\mu} \sin (2 k \pi t)\left[\frac{t}{m} \exp \left(-\frac{t^{2}}{2 m}\right) \sin _{\sin }^{\cos } F(t)\right. \tag{14}\\
&\left. \pm \exp \left(-\frac{t^{2}}{2 m}\right) F^{\prime}(t) \sin F(t)\right] d t \\
&=(15)+(16), \text { say. } \\
&(15)=\sum_{k=1}^{\infty} \frac{1}{2 k \pi}\left[\pm \int_{-\mu}^{\mu} \frac{t}{m} \exp \left(-\frac{t^{2}}{2 m}\right) \sin (F(t)+2 k \pi t) d t\right. \\
& \cos \\
&\left.\mp \int_{-\mu}^{\mu} \frac{t}{m} \exp \left(-\frac{t^{2}}{2 m}\right) \sin _{\cos }(F(t)-2 k \pi t) d t\right] \\
&=(17)+(18), \quad \operatorname{say} .
\end{align*}
$$

By the Lemma, (18) $=O\left(\sum_{k=1}^{\infty} m^{-1 / 4+(3 / 2) \delta} / k \sqrt{|k-B / 2 \pi|)}\right.$, and by integration by parts,

$$
(17)=O\left(m^{-1 / 2} \sum_{k=1}^{\infty} \frac{1}{k^{2}}\right)=O\left(m^{-1 / 2}\right)
$$

Similarly,

$$
(16)=O\left(m^{1-\beta}\right)+O\left(m^{-1 / 4+(3 / 2)\rangle} \sum_{k=1}^{\infty} \frac{1}{k \sqrt{|k-B / 2 \pi|}}\right) .
$$

On the other hand

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{1}{k \sqrt{|k-B / 2 \pi|}}=\sum_{1 \leq k<B / 2 \pi} \frac{1}{k \sqrt{|k-B / 2 \pi|}}+\sum_{k>B / 2 \pi} \frac{1}{k \sqrt{|k-B / 2 \pi|}} \\
& =O\left(\log \frac{B}{2 \pi} \cdot\left\{\frac{B}{2 \pi}\right\}^{-1 / 2}\right)+O\left(\left(1-\left\{\frac{B}{2 \pi}\right\}\right)^{-1 / 4}\right),
\end{aligned}
$$

where $\{\lambda\}$ denotes the fractional part of λ.
Therefore

$$
\begin{align*}
&(13)=O\left(m^{-\alpha-\beta-1 / 2}\right)+O\left(m^{-\alpha-3 / 4+(3 / 2) \delta}\left\{\frac{\beta \theta}{2 \pi} m^{\beta-1}\right\}^{-1 / 2}\right) \\
&+O\left.O m^{-\alpha-3 / 4+(3 / 2) \delta}\left(1-\left\{\frac{\beta \theta}{2 \pi} m^{\beta-1}\right\}\right)^{-1 / 4}\right), \\
& \int_{K}^{\infty}(13) d x= O\left(\int_{K}^{\infty} x^{-\alpha-\beta+1 / 2} d x\right)+O\left(\int_{K}^{\infty} \frac{d x}{x^{\alpha+3 / 4-(3 / 2 / 2)} \sqrt{\left\{(\beta \theta / 2 \pi) x^{\beta-1}\right\}}}\right) \tag{19}\\
&+O\left(\int_{K}^{\infty} \frac{d x}{x^{\alpha+3 / 4-(3 / 2) \delta \sqrt[4]{(1)}} \sqrt{\left(1-\left\{(\beta \theta / 2 \pi) x^{\beta-1}\right\}\right)}}\right) .
\end{align*}
$$

Since for any given $0<a<1$ and $b>1$ there exists a constant $K>1$ such that both of

$$
\int_{K}^{\infty} \frac{d x}{\sqrt{\left\{x^{a}\right\}} x^{b}} \quad \text { and } \int_{K}^{\infty} \frac{d x}{\sqrt[4]{\left(1-\left\{x^{0}\right\}\right) x^{b}}}
$$

converge, we know that all the integrals in (19) are convergent for some $K>1$. Hence follows the convergence of (7). In like manners we can estimate all the other remaining terms and finally obtain (5).
Q. E. D.

References

[1] M. Akita and T. Kano: On the Convergence of $\sum_{n=1}^{\infty} n^{-\alpha} \sin \left(n^{\beta} \theta\right)$. Proc. Japan Acad., 58A, 172-174 (1982).
[2] G. H. Hardy: Divergent Series. Oxford (1949).
[3] E. C. Titchmarsh: The Theory of the Riemann Zeta-Function. Oxford (1951)

