75. On Certain Cubic Fields. III

By Mutsuo WATABE

Department of Mathematics, Keio University

(Communicated by Shokichi IYANAGA, M. J. A., June 14, 1983)

1. The notations E_F , E_F^+ , \mathcal{O}_F for an algebraic number field F, D_g for a polynomial $g(x) \in \mathbb{Z}[x]$ and $D(\theta)$ for an algebraic number θ have the same meanings as in [1]. For a totally real cubic field K, we also use the notations $\mathcal{A}(K)$, $\mathcal{B}_{\epsilon}(K)$ and $S: K \to R$ as in [1].

The purpose of this note is to show the following theorem :

Theorem. Let $K = Q(\delta)$, where $\operatorname{Irr}(\delta: Q) = g(x) = x^3 - nx^2 - (n+1)x$ -1, $n \in \mathbb{Z}$ but $n \neq 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5, -6$. If $D_g = (n^2 + n - 3)^2$ -32 is square free, then we have $\delta \in \mathcal{A}(K)$, $\delta + 1 \in \mathcal{B}_{\delta}(K)$ and $E_K^+ = \langle \delta, \delta + 1 \rangle$.

Remark 1. We may limit our consideration to the case $n \le -7$ for the following reason. Put $G(n, x) = x^3 - nx^2 - (n+1)x - 1$ and m = -(n+1). Then we have $-(1/x^3)G(n, x) = G(m, 1/x)$ and if $n \ge 6$, we have $m \le -7$. Thus if $\operatorname{Irr}(\delta: Q) = G(n, x)$ with $n \ge 6$, then $\operatorname{Irr}(1/\delta: Q) = G(m, x)$ with $m \le -7$. Thus we suppose $n \le -7$ in the sequel.

Remark 2. K/Q is cubic because of the irreducibility of g(x), and it is totally real in virtue of $D_g = (n^2 + n - 3)^2 - 32 > 0$. It is easy to verify that $(n^2 + n - 3)^2 - 32$ can not be a square. Thus K/Q is non Galois.

2. Proof of Theorem. First we shall show $\delta \in \mathcal{A}(K)$, $\delta+1 \in \mathcal{B}_{\delta}(K)$. It is clear that δ , $\delta+1 \in E_{K}^{+}$. As $K = Q(\delta)$, $D_{g} \neq 0$ and D_{g} is square free, we have $D_{g} = D(\delta)$ and consequently we have $\mathcal{O}_{K} = Z + Z\delta + Z\delta^{2}$. Any unit $v \neq 1$ in E_{K}^{+} can be written as $v = a + b\delta + c\delta^{2}$, where $a, b, c \in Z$ and $(b, c) \neq (0, 0)$. This yields, in denoting the conjugates of δ by α , β , $\tilde{\gamma}$,

$$\begin{split} S(v) = & \frac{1}{2} \{ b^2 (\alpha - \beta)^2 + c^2 (\alpha^2 - \beta^2)^2 + 2bc(\alpha - \beta)(\alpha^2 - \beta^2) \\ & + b^2 (\beta - \gamma)^2 + c^2 (\beta^2 - \gamma^2)^2 + 2bc(\beta - \gamma)(\beta^2 - \gamma^2) \\ & + b^2 (\gamma - \alpha)^2 + c^2 (\gamma^2 - \alpha^2)^2 + 2bc(\gamma - \alpha)(\gamma^2 - \alpha^2) \}. \end{split}$$

Using Proposition 4 in [1], we have $S(\delta) = n^2 + 3n + 3 > 0$ and S(v) = P + Q + R, where

$$\begin{split} P &= \frac{1}{2} b^2 \{ (\alpha - \beta)^2 + (\beta - \tilde{\tau})^2 + (\tilde{\tau} - \alpha)^2 \} = b^2 S(\delta), \\ Q &= \frac{1}{2} c^2 \{ (\alpha^2 - \beta^2)^2 + (\beta^2 - \tilde{\tau}^2)^2 + (\tilde{\tau}^2 - \alpha^2)^2 \} = c^2 (n^4 + 4n^3 + 5n^2 + 8n + 1) \\ &= c^2 S(\delta) + (n^4 + 4n^3 + 5n - 2) c^2 = (n^2 + n + 1) c^2 S(\delta) + (-2n^2 + 2n - 2) c^2 \} \end{split}$$

Cubic Fields. III

 $\begin{array}{l} R = bc(2n^3 + 7n^2 + 7n + 9) = (2n+1)bcS(\delta) + (-2n+6)bc.\\ \text{We examine the different cases.} \quad \text{If } bc \leq 0, \text{ then } R \geq 0 \text{ and}\\ (n^4 + 4n^3 + 4n^2 + 5n - 2)c^2 \geq 0 \end{array}$

in virtue of $n \leq -7$, so that we have

$$S(v) = P + Q + R \ge (b^2 + c^2)S(\delta) \ge S(\delta)$$

in virtue of $(b, c) \neq (0, 0)$. If bc > 0, then we have $S(v) = S(\delta) + T$, where

$$T = \left\{ \left(f + \rho \frac{\sqrt{3}}{2} c \right)^2 + (-1 - \rho \sqrt{3} f c) \right\} S(\delta) + (-3n - 5)c^2 + (-2n + 6)fc,$$

and $\rho = -1$ when $fc \ge 0$ and $\rho = +1$ when fc < 0, since (*) $S(v) = P + Q + R = \left(f^2 + \frac{3}{4}c^2\right)S(\delta) + (-2n^2 + 2n - 2)c^2 + (-2n + 6)bc$, where f = b + (n + 1/2)c.

If fc>0, then we have T>0 in virtue of $n \leq -7$. In fact, if |f|>1/2, then $fc\geq 1$, so that T>0, which yields $S(v)>S(\delta)$. If |f|=1/2, then $fc\geq 1/2$. So that we have

$$T = \left\{ f^2 + \frac{3}{4}c^2 - 1 \right\} S(\delta) + (-3n - 5)c^2 + (-2n + 6)fc > 0,$$

since $f^2+3c^2/4-1>0$, $(-3n-5)c^2>0$ and (-2n+6)fc>0 in virtue of $n \leq -7$. Hence we get $S(v)>S(\delta)$. If fc=0, then we have f=0 because bc<0, so that we have $c=2c', 0 \neq c' \in \mathbb{Z}$. Then we have $S(v) = (3c'^2-1)S(\delta)+(-3n-5)c^2$ in virtue of (*), which yields $S(v)>S(\delta)$. If fc<0, then we have also $S(v)>S(\delta)$. In fact, if |f|>1/2, then we have $fc\leq -1$. Then

$$T = \left(f + \frac{\sqrt{3}}{2}c\right)^2 S(\delta) + \left(-\sqrt{3}S(\delta) - 2n + 6\right)fc - S(\delta) + (-3n - 5)c^2 > 0$$

in virtue of

 $(-\sqrt{3}S(\delta)-2n+6)fc-S(\delta)>(\sqrt{3}-1)n^2+(3\sqrt{3}-1)n+3\sqrt{3}-9>0,$ $(f+\sqrt{3}c/2)^2S(\delta)>0$ and $(-3n-5)c^2>0$ with $n\leq -7$. Hence we get $S(v)>S(\delta)$. If |f|=1/2, then we have $f=\pm c/2$, so that we have

$$S(v) = \left(\frac{1}{4} + \frac{3}{4}c^{2}\right)S(\delta) + (-3n-5)c^{2} \pm (-n+3)c,$$

which yields $S(v) > S(\delta)$ in virtue of

 $(-3n-5)c^2\pm(-n+3)c>(-3n-5)c^2-(-n+3)c^2>0$ for $n\leq -7$. Thus we get $S(v)\geq S(\delta)$ in all cases. Therefore we obtain $\delta \in \mathcal{A}(K)$. We have also $\delta+1\in \mathcal{B}_{\delta}(K)$ as in [1].

Next we shall show $E_{\kappa}^{+} = \langle \delta, \delta + 1 \rangle$. Let us denote $E_{1} = \langle \delta, \delta + 1 \rangle$. Then we have $(E_{\kappa}^{+}: E_{1}) \leq 4$ in virtue of Proposition 1 in [1].

(i) Suppose $2|(E_{K}^{+}:E_{1})$, then there exists $\mu \in E_{K}^{+}$ such that $\mu^{2} = \delta^{i}(\delta+1)^{j}, \ \mu \notin E_{1}, \quad \text{where } i, j \in \{0, 1\}.$

It is clear that $(i, j) \neq (0, 0)$, (1, 0) as in [1]. If (i, j) = (0, 1), we have $\mu^2 - 1 = \delta$. Let us denote $I = \mu + \mu' + \mu''$ and $J = \mu \mu' + \mu' \mu'' + \mu'' \mu$, where

No. 6]

 μ', μ'' are the conjugates of μ . As $N_{K/Q}(\mu^2-1)=N_{K/Q}(\delta)=1$, we examine the following different cases. If $N_{K/Q}(\mu+1)=N_{K/Q}(\mu-1)=1$, we get I=0, J=-1 as $\mu \in E_K^+$. Then μ is a root of $r(x)=x^3-x-1=0$ with $D_r=-23$, which can not be the case as $\mu \in K$ is totally real. If $N_{K/Q}(\mu+1)=N_{K/Q}(\mu-1)=-1$, then I=-2, J=-1 as $\mu \in E_K^+$. Then μ is a root of $s(x)=x^3+2x^2-x-1=0$ with $D_s=7^2$. Then $\mu \in K$ belongs to a Galois cubic field with discriminant 7^2 . This contradicts to the fact that K/Q is non Galois. If (i, j)=(1, 1), then we have $\mu^2=\delta(\delta+1)$, so that we have $(\mu/\delta)^2-1=1/\delta$, which can not take place as in the case (i, j)=(0, 1). Thus we obtain $2 \nmid (E_K^+: E_1)$.

(ii) Suppose $3|(E_{k}^{\star}: E_{1})$, there exists $\lambda \in E_{k}^{\star}$ such that $\lambda^{3} = \delta^{k}(\delta+1)^{i}$, $\lambda \notin E_{1}$, where $k, l \in \{0, 1, 2\}$. We can easily see that $(k, l) \neq (0, 0)$, (1, 0), (0, 1), (1, 2), (2, 1) in virtue of Proposition 2 in [1]. If (k, l) = (1, 1), then we have

 $S(\delta+1)^3 \leq S(\lambda)^3 < 9S(\delta(\delta+1)) < 27S(\delta+1)^2,$

in virtue of $\lambda^3 = \delta(\delta+1)$ and Proposition 3 in [1]. Hence we get $S(\delta+1) < 27$. On the other hand, we have $S(\delta+1) = S(\delta) = n^2 + 3n + 3 > 27$ in virtue of $n \leq -7$. Thus we have $27 < S(\delta+1) < 27$. This is a contradiction. The case (k, l) = (2, 2) can be reduced to the case (k, l) = (1, 1), which can not take place. Thus we obtain $3 \nmid (E_K^+: E_1)$. Therefore we have $E_K^+ = E_1 = \langle \delta, \delta + 1 \rangle$. This completes the proof of Theorem.

Reference

 M. Watabe: On certain cubic fields I. Proc. Japan Acad., 59A, 66-69 (1983).