75. On Certain Cubic Fields. III

By Mutsuo Watabe
Department of Mathematics, Keio University
(Communicated by Shokichi Iyanaga, m. J. A., June 14, 1983)

1. The notations $E_{F}, E_{F}^{+}, \mathcal{O}_{F}$ for an algebraic number field F, D_{g} for a polynomial $g(x) \in Z[x]$ and $D(\theta)$ for an algebraic number θ have the same meanings as in [1]. For a totally real cubic field K, we also use the notations $\mathcal{A}(K), \mathscr{B}_{\bullet}(K)$ and $S: K \rightarrow R$ as in [1].

The purpose of this note is to show the following theorem:
Theorem. Let $K=\boldsymbol{Q}(\delta)$, where $\operatorname{Irr}(\delta: Q)=g(x)=x^{3}-n x^{2}-(n+1) x$ $-1, n \in Z$ but $n \neq 0, \pm 1, \pm 2, \pm 3, \pm 4, \pm 5,-6$. If $D_{g}=\left(n^{2}+n-3\right)^{2}$ -32 is square free, then we have $\delta \in \mathcal{A}(K), \delta+1 \in \mathscr{B}_{8}(K)$ and E_{K}^{+} $=\langle\delta, \delta+1\rangle$.

Remark 1. We may limit our consideration to the case $n \leqq-7$ for the following reason. Put $G(n, x)=x^{3}-n x^{2}-(n+1) x-1$ and m $=-(n+1)$. Then we have $-\left(1 / x^{3}\right) G(n, x)=G(m, 1 / x)$ and if $n \geqq 6$, we have $m \leqq-7$. Thus if $\operatorname{Irr}(\delta: \boldsymbol{Q})=G(n, x)$ with $n \geqq 6$, then $\operatorname{Irr}(1 / \delta: \boldsymbol{Q})$ $=G(m, x)$ with $m \leqq-7$. Thus we suppose $n \leqq-7$ in the sequel.

Remark 2. K / \boldsymbol{Q} is cubic because of the irreducibility of $g(x)$, and it is totally real in virtue of $D_{g}=\left(n^{2}+n-3\right)^{2}-32>0$. It is easy to verify that $\left(n^{2}+n-3\right)^{2}-32$ can not be a square. Thus K / \boldsymbol{Q} is non Galois.
2. Proof of Theorem. First we shall show $\delta \in \mathcal{A}(K), \delta+1$ $\in \mathscr{B}_{\delta}(K)$. It is clear that $\delta, \delta+1 \in E_{K}^{+}$. As $K=\boldsymbol{Q}(\delta), D_{g} \neq 0$ and D_{g} is square free, we have $D_{g}=D(\delta)$ and consequently we have $\mathcal{O}_{K}=\boldsymbol{Z}+\boldsymbol{Z} \delta$ $+\boldsymbol{Z} \delta^{2}$. Any unit $v \neq 1$ in E_{K}^{+}can be written as $v=a+b \delta+c \delta^{2}$, where $a, b, c \in Z$ and $(b, c) \neq(0,0)$. This yields, in denoting the conjugates of δ by α, β, γ,

$$
\begin{aligned}
S(v)= & \frac{1}{2}\left\{b^{2}(\alpha-\beta)^{2}+c^{2}\left(\alpha^{2}-\beta^{2}\right)^{2}+2 b c(\alpha-\beta)\left(\alpha^{2}-\beta^{2}\right)\right. \\
& +b^{2}(\beta-\gamma)^{2}+c^{2}\left(\beta^{2}-\gamma^{2}\right)^{2}+2 b c(\beta-\gamma)\left(\beta^{2}-\gamma^{2}\right) \\
& \left.+b^{2}(\gamma-\alpha)^{2}+c^{2}\left(\gamma^{2}-\alpha^{2}\right)^{2}+2 b c(\gamma-\alpha)\left(\gamma^{2}-\alpha^{2}\right)\right\} .
\end{aligned}
$$

Using Proposition 4 in [1], we have $S(\delta)=n^{2}+3 n+3>0$ and $S(v)=P+Q+R$, where

$$
\begin{aligned}
P & =\frac{1}{2} b^{2}\left\{(\alpha-\beta)^{2}+(\beta-\gamma)^{2}+(\gamma-\alpha)^{2}\right\}=b^{2} S(\delta) \\
Q & =\frac{1}{2} c^{2}\left\{\left(\alpha^{2}-\beta^{2}\right)^{2}+\left(\beta^{2}-\gamma^{2}\right)^{2}+\left(\gamma^{2}-\alpha^{2}\right)^{2}\right\}=c^{2}\left(n^{4}+4 n^{3}+5 n^{2}+8 n+1\right) \\
& =c^{2} S(\delta)+\left(n^{4}+4 n^{3}+5 n-2\right) c^{2}=\left(n^{2}+n+1\right) c^{2} S(\delta)+\left(-2 n^{2}+2 n-2\right) c^{2}
\end{aligned}
$$

$$
R=b c\left(2 n^{3}+7 n^{2}+7 n+9\right)=(2 n+1) b c S(\delta)+(-2 n+6) b c .
$$

We examine the different cases. If $b c \leqq 0$, then $R \geqq 0$ and

$$
\left(n^{4}+4 n^{3}+4 n^{2}+5 n-2\right) c^{2} \geqq 0
$$

in virtue of $n \leqq-7$, so that we have

$$
S(v)=P+Q+R \geqq\left(b^{2}+c^{2}\right) S(\delta) \geqq S(\delta)
$$

in virtue of $(b, c) \neq(0,0)$. If $b c>0$, then we have $S(v)=S(\delta)+T$, where

$$
T=\left\{\left(f+\rho \frac{\sqrt{3}}{2} c\right)^{2}+(-1-\rho \sqrt{3} f c)\right\} S(\delta)+(-3 n-5) c^{2}+(-2 n+6) f c
$$

and $\rho=-1$ when $f c \geqq 0$ and $\rho=+1$ when $f c<0$, since
(*) $S(v)=P+Q+R=\left(f^{2}+\frac{3}{4} c^{2}\right) S(\delta)+\left(-2 n^{2}+2 n-2\right) c^{2}+(-2 n+6) b c$, where $f=b+(n+1 / 2) c$.

If $f c>0$, then we have $T>0$ in virtue of $n \leqq-7$. In fact, if $|f|>1 / 2$, then $f c \geqq 1$, so that $T>0$, which yields $S(v)>S(\delta)$. If $|f|=1 / 2$, then $f c \geqq 1 / 2$. So that we have

$$
T=\left\{f^{2}+\frac{3}{4} c^{2}-1\right\} S(\delta)+(-3 n-5) c^{2}+(-2 n+6) f c>0
$$

since $f^{2}+3 c^{2} / 4-1>0,(-3 n-5) c^{2}>0$ and $(-2 n+6) f c>0$ in virtue of $n \leqq-7$. Hence we get $S(v)>S(\delta)$. If $f c=0$, then we have $f=0$ because $b c<0$, so that we have $c=2 c^{\prime}, 0 \neq c^{\prime} \in Z$. Then we have $S(v)$ $=\left(3 c^{\prime 2}-1\right) S(\delta)+(-3 n-5) c^{2}$ in virtue of $\left(^{*}\right)$, which yields $S(v)>S(\delta)$. If $f c<0$, then we have also $S(v)>S(\delta)$. In fact, if $|f|>1 / 2$, then we have $f c \leqq-1$. Then

$$
T=\left(f+\frac{\sqrt{3}}{2} c\right)^{2} S(\delta)+(-\sqrt{3} S(\delta)-2 n+6) f c-S(\delta)+(-3 n-5) c^{2}>0
$$

in virtue of

$$
(-\sqrt{3} S(\delta)-2 n+6) f c-S(\delta)>(\sqrt{3}-1) n^{2}+(3 \sqrt{3}-1) n+3 \sqrt{3}-9>0
$$ $(f+\sqrt{3} c / 2)^{2} S(\delta)>0$ and $(-3 n-5) c^{2}>0$ with $n \leqq-7$. Hence we get $S(v)>S(\delta)$. If $|f|=1 / 2$, then we have $f= \pm c / 2$, so that we have

$$
S(v)=\left(\frac{1}{4}+\frac{3}{4} c^{2}\right) S(\delta)+(-3 n-5) c^{2} \pm(-n+3) c
$$

which yields $S(v)>S(\delta)$ in virtue of

$$
(-3 n-5) c^{2} \pm(-n+3) c>(-3 n-5) c^{2}-(-n+3) c^{2}>0
$$

for $n \leqq-7$. Thus we get $S(v) \geqq S(\delta)$ in all cases. Therefore we obtain $\delta \in \mathcal{A}(K)$. We have also $\delta+1 \in \mathscr{B}_{\delta}(K)$ as in [1].

Next we shall show $E_{K}^{+}=\langle\delta, \delta+1\rangle$. Let us denote $E_{1}=\langle\delta, \delta+1\rangle$. Then we have $\left(E_{K}^{+}: E_{1}\right) \leqq 4$ in virtue of Proposition 1 in [1].
(i) Suppose $2 \mid\left(E_{K}^{+}: E_{1}\right)$, then there exists $\mu \in E_{K}^{+}$such that

$$
\mu^{2}=\delta^{i}(\delta+1)^{j}, \mu \notin E_{1}, \quad \text { where } i, j \in\{0,1\} .
$$

It is clear that $(i, j) \neq(0,0),(1,0)$ as in [1]. If $(i, j)=(0,1)$, we have $\mu^{2}-1=\delta$. Let us denote $I=\mu+\mu^{\prime}+\mu^{\prime \prime}$ and $J=\mu \mu^{\prime}+\mu^{\prime} \mu^{\prime \prime}+\mu^{\prime \prime} \mu$, where
$\mu^{\prime}, \mu^{\prime \prime}$ are the conjugates of μ. As $N_{K / Q}\left(\mu^{2}-1\right)=N_{K / Q}(\delta)=1$, we examine the following different cases. If $N_{K / Q}(\mu+1)=N_{K / Q}(\mu-1)=1$, we get $I=0, J=-1$ as $\mu \in E_{K}^{+}$. Then μ is a root of $r(x)=x^{3}-x-1=0$ with $D_{r}=-23$, which can not be the case as $\mu \in K$ is totally real. If $N_{K / Q}(\mu+1)=N_{K / Q}(\mu-1)=-1$, then $I=-2, J=-1$ as $\mu \in E_{K}^{+}$. Then μ is a root of $s(x)=x^{3}+2 x^{2}-x-1=0$ with $D_{s}=7^{2}$. Then $\mu \in K$ belongs to a Galois cubic field with discriminant 7^{2}. This contradicts to the fact that K / \boldsymbol{Q} is non Galois. If $(i, j)=(1,1)$, then we have $\mu^{2}=\delta(\delta+1)$, so that we have $(\mu / \delta)^{2}-1=1 / \delta$, which can not take place as in the case $(i, j)=(0,1)$. Thus we obtain $2 \nmid\left(E_{K}^{+}: E_{1}\right)$.
(ii) Suppose $3 \mid\left(E_{K}^{+}: E_{1}\right)$, there exists $\lambda \in E_{K}^{+}$such that $\lambda^{3}=\delta^{k}(\delta+1)^{l}$, $\lambda \notin E_{1}$, where $k, l \in\{0,1,2\}$. We can easily see that $(k, l) \neq(0,0),(1,0)$, $(0,1),(1,2),(2,1)$ in virtue of Proposition 2 in [1]. If $(k, l)=(1,1)$, then we have

$$
S(\delta+1)^{3} \leqq S(\lambda)^{3}<9 S(\delta(\delta+1))<27 S(\delta+1)^{2}
$$

in virtue of $\lambda^{3}=\delta(\delta+1)$ and Proposition 3 in [1]. Hence we get $S(\delta+1)$ <27. On the other hand, we have $S(\delta+1)=S(\delta)=n^{2}+3 n+3>27$ in virtue of $n \leqq-7$. Thus we have $27<S(\delta+1)<27$. This is a contradiction. The case $(k, l)=(2,2)$ can be reduced to the case $(k, l)=(1,1)$, which can not take place. Thus we obtain $3 \nmid\left(E_{K}^{+}: E_{1}\right)$. Therefore we have $E_{K}^{+}=E_{1}=\langle\delta, \delta+1\rangle$. This completes the proof of Theorem.

Reference

[1] M. Watabe: On certain cubic fields I. Proc. Japan Acad., 59A, 66-69 (1983).

