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Asymptotic Error Estimation for
Spline.on.Spline Interpolation

By Manabu SAKAI*) and Riaz A. USMANI**)

(Communicated by Sho.kichi IYANA(]A, M. $.A., June 14, 1983)

1. Introduction and description of method. We shall consider
an. asympto.tic error estimation or spline-on-spline interpolation on a
uniform mesh. The spline-on-spline technique is described in [3]"
Suppose we have an interval [0, 1] partitioned in n equal parts of
length h. In order to find for a given function f(x) an approximant o.f
its first derivative f’(x), we interpolate f(x) by a cubic spline s(x) over
the mesh under appropriate additional end conditions at the endpoints.
Then replacing f(x) by.s’(x), we get an approximant of f"(x), and this
procedure can be continued. Ahlberg et al. [1] observed that it gives
excellent results, for the seco.nd deriva.tive of sin x, and Dolezal and
Tewarson [3] obtained error bo.unds for the spline-on-spline inter-
polation. In what follows, let r, k and be nonnegative integers, and
s =s((ih).

Corresponding to the sufficiently smoo.th function f(x) on [0, 1],
one constructs a cubic spline s(x) of the form

t--1

1 ) s(x)-- Q(x/h-i), nh-- 1

so. that
(2) s=f, i-0, 1, ..., n.

Since s depends, upo.n n+3 parameters, two additional conditions
are required to.ward the determina.tion o.i s. Under various (end)
conditions in [5], we have
( 3 ) f-s’=(h4/180)f) +O(h5), i O, 1, n.
In the present paper we take these to be ho.mogeneous end conditions"
( 4 /s =/7 s=0
where z/ and /7 are io.rward and backward difference operators, re-
spectively. By the consistency relation [1, p. 13] and (2), we have
(5) (1/6)(s/+4s+s_)=(1/2)h-(s/-s_)

(1/2)h-l(f+l-f_ 1), i 1, 2, ..., n- 1.
t.__By (5), end condition /So 0 may be equivalently rewritten as follows

( 6 ) sg+ ars;-Lr(fo, f, ..., f), r2
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where a is real constant and L(f0, f, ..., f) is some linear combi-
.., s0 0 is equivalent tonation o.f, i 0, 1, r For example ’=

( 7 ) s+(15/4)s=(1/144)(865d-226d+54d--ld+d)
where we denote the right-hand side 2 (5) by d. For {a}, we have

The above sequence {a} is defined in the followingLemma 1
mnner

In addition

(a0, a, a)=(0, --1, 5)
ar/=(5ar--1)/(a+ 1), r 3, 4,

lim ar =2+ v-.
Proof. Since zr+l rs0=z] s-- So, by mathematical induction and

consistency relation (5), we have the .desired result.
Before we proceed with analysis, we shall require the following

lemma which is similarly obtained in the proof of Lemma in. [7].
Lemma 2 (cf. [2]). If (2+)#fl, the following tridiagonal n

by n matrix A is nonsingular for suciently large n and in a,ddition
(8) llA;IIGC for some constant C independent of n
where .1 stands for the matrix maximum norm and

1 4 1

1 4 1

With the help o.f Lemmas 1 and 2, the resulting matrix generated
by (2) and (4) will be ill-conditioned for large integers r.

From (4) and (5), by Taylor series expansion we have
de=O(h)
(1/6) (e++4e+ e_) (h/180)f) + (h/3780)f) + O(hS),

(9) i=1, 2, ..., n-1
,g e O(h9

where e f- s.
Since a is rational, in virtue of Lemma 2 we have

(10) f-s’= (h/18O)f)- (h/1512)f) + O(hmn(s’r))
i=, 1, ..., n for sufficiently small h.

Now by means o spline-o.n-spline technique, let us consider a

cubic spline p o. the form
n-1

(11) p(x)= flQ(x/h-i)
i= -3

Iz]*p=O, k_r-1
(12) p=s, i=0, 1, ..., n

(Vp’=0.

so, that
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That is, p is considered to, be a cubic spline-on-spline interpolant o.f
s’. By the consistency relatio.n and (11), we have
(13) (1/6)(p++4p+p_)=(1/2)h-(s/

f’+ (h2/6)f4) +(h4/360)f6- (h6/15120)fs +0
i-1, 2, ..., n-1.

Hence, by using again Lemma 2, we get
(14) f’--p- (h4/90)f-(h6/756)fs+ O(hmin(7’r-)), i- O, 1, ..., n.
Since f’-s"=(h/12)f+. ([5]), by (14) we have an improved
approximation to f" at mesh point. Here we remark that the result-
ing matrix generated by (2) and (4) is exactly the same one generated
by (12)o.r k-r, i.e., the spline-on-spline p is determined with very
little additional effo.rt.

Here we consider a cubic spline q o. the orm
n--1

q(x)-- 7Q(x/h-i)
i=-3

so. that
/qg= 0, l_r--2

(15) q=p, i= 0, 1, ..., n
/7q= 0.

That is, q is considered to. be a spline-on-spline interpolant o p’.
Similarly we have
(16) f)--q= (h4/60)f7)= O(hmm(’r-2)) i= O, 1, ..., n.

By means of Kershaw’s technique in [4], we have
Remark. For any nonnegative integers k, r and l, we have

(14) and (16) or any mesh point different from endpoints x=0, 1.
2. Results of some numerical experiments. The results o some

computational experiments are given in Table or the unctions e and
e. We choose (r, n)=(6, 32) and denote

k(k) {f"(x) p’(x)}/{(h/90)f()(x)}
k(x) {f()(x)--q’(x)}/{(h/60)f()(x)}.

By (14) and (16), values of k(x) and k(x) converge to I for any fixed
mesh points x e (0, 1) as h-.0.

1/4
1/2
3/4

Table

e

k4x) ks(x)

1.00 1.05
1.00 1.00

1.00 1.07

1.00 1.03
1.00 1.00

0.99 1.13

k(x) k(x)
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