72. G-Vector Bundles and F-Projective Modules*)

By Katsuo KAWAKUBO Osaka University

(Communicated by Kunihiko Kodaira, M. J. A., June 14, 1983)

§ 1. Introduction. Swan has shown that there is a one to one correspondence between vector bundles over a compact Hausdorff space X and finitely generated projective modules over the ring of continuous real-valued functions on X [7].

In the present paper, we will consider an equivariant version of this. Let G be a compact topological group. Then a notion of G-vector bundles is already defined [1]. On the other hand, we introduce notions of equivariant modules, of a family F of equivariant modules and of F-projective modules so that we have an equivariant Swan theorem.

For each family F, we define two kinds of equivariant algebraic K-theories associated with F. Taking a suitable family F, we have an isomorphism of an equivariant topological K-theory and our equivariant algebraic K-theory associated with F.

Equivariant algebraic K-theory is studied along the line of Quillen [6] by Fiedorowicz, Hauschild and May [4], while our approach is along the line of the classical algebraic K-theory [5]. The reason will clear up in a subsequent paper. Namely we will show that our equivariant algebraic K-theory is a Mackey functor [3]. Accordingly the Dress induction theorem [2] is applicable. Using our equivariant Swan theorem, we will show that Brauer and Artin type induction theorems hold in equivariant topological K-theories $KO_G(X)$ and $K_G(X)$. Accordingly equivariant topological K-theories are characterized by the hyperelementary subgroups.

§ 2. Families and equivariant algebraic K-theory. The word ring will always mean associative ring with an identity element 1. Let G be a group. A G-ring is a ring Λ together with a G-action on Λ preserving the ring structure. If Λ is a G-ring, a ΛG -module is a module M over Λ together with a G-action on M such that

$$g(\lambda_1 m_1 + \lambda_2 m_2) = (g\lambda_1)(gm_1) + (g\lambda_2)(gm_2)$$
 for any $g \in G$, $\lambda_i \in \Lambda$, $m_i \in M$.

A collection F of finitely generated ΛG -modules is called a *family* if the following holds;

^{*}Dedicated to Prof. Minoru Nakaoka on his sixtieth birthday. Research a protted in part by Grant-in-Aid for Scientific Research.

"if M_1 , $M_2 \in F$, then there exists an element $N \in F$ such that $M_1 \oplus M_2$ is a direct summand of N".

When Λ is a commutative G-ring, we can consider a product of two ΛG -modules as follows. If M_1 and M_2 are ΛG -modules, define $M_1 \otimes M_2$ to be $M_1 \otimes_{\Lambda} M_2$ as a Λ -module with G-action by $g(m_1 \otimes m_2) = gm_1 \otimes gm_2$ for $g \in G$, $m_i \in M_i$.

When Λ is a commutative G-ring, a collection F of finitely generated ΛG -modules is called a *multiplicative family* if in addition to the above condition the following holds;

"if M_1 , $M_2 \in F$, then there exists an element $N \in F$ such that $M_1 \otimes M_2$ is a direct summand of N".

Each element of F is called F-free. A ΛG -module M is called F-projective, if there exists a ΛG -module N so that $M \oplus N$ is F-free.

We introduce two kinds of equivariant algebraic K-groups as follows. $K^o(\Lambda; F)_a$ (resp. $K^o(\Lambda; F)_e$) is defined to be the abelian group given by generators [P] where P is a F-projective ΛG -module, with relations

$$[P] = [P'] + [P'']$$

whenever $P \cong P' \oplus P''$ (resp. $0 \rightarrow P' \rightarrow P \rightarrow P'' \rightarrow 0$ is an exact sequence of ΛG -modules).

If Λ is a commutative G-ring and if F is a multiplicative family of ΛG -modules, the product above induces a structure of commutative ring in $K^{\sigma}(\Lambda; F)_{\sigma}$ (not in $K^{\sigma}(\Lambda; F)_{\varepsilon}$ in general).

§ 3. Equivariant Swan theorem. Let Δ be one of the classical fields R (the real numbers), C (the complex numbers) or Q (the quaternions). Let X be a compact Hausdorff G-space. A ΔG -vector bundle ξ on X is a Δ -vector bundle together with a G-action on ξ preserving the Δ -vector bundle structure [1]. The set of isomorphism classes of ΔG -vector bundles on X forms an abelian semi-group under the Whitney sum. The associated abelian group is denoted by $K\Delta_G(X)$. The tensor product of G-vector bundles induces a structure of commutative ring in $K\Delta_G(X)$ for $\Delta = R$ or C.

Let $C_{\mathfrak{d}}(X)$ be the ring of continuous Δ -valued functions on X. Then G acts on $C_{\mathfrak{d}}(X)$ by $(g \circ a)(x) = a(g^{-1}x)$ for $g \in G$, $a \in C_{\mathfrak{d}}(X)$ and $x \in X$. With these definitions, $C_{\mathfrak{d}}(X)$ becomes a G-ring. Then Δ is a G-subring of $C_{\mathfrak{d}}(X)$ by regarding an element $a \in \Delta$ as the constant function of value a.

The set $\Gamma(\xi)$ of all sections of ξ is a module over $C_{\mathcal{A}}(X)$ and G acts on $\Gamma(\xi)$ by $(g \circ s)(x) = gs(g^{-1}x)$ for $g \in G$, $s \in \Gamma(\xi)$, $x \in X$. It is easy to see that with these definitions $\Gamma(\xi)$ becomes a $C_{\mathcal{A}}(X)G$ -module in the sense of §2. In fact the notions of G-rings and ΛG -modules are abstracted from $C_{\mathcal{A}}(X)$ and $\Gamma(\xi)$.

Let V be a finite dimensional G-representation space over Δ . Regarding $C_{\Delta}(X)$ as a right Δ -module, we form a finitely generated $C_{\Delta}(X)G$ -module $C_{\Delta}(X)\otimes_{\Delta}V$. Let F_{τ} be the set consisting of such modules $C_{\Delta}(X)\otimes_{\Delta}V$. Then F_{τ} becomes a family in the sense of § 2. If $\Delta = R$ or C, then F_{τ} is a multiplicative family. Denote by \underline{V} the trivial bundle $p: X \times V \to X$.

Theorem 3.1. Let G be a compact topological group and X be a compact Hausdorff G-space. Then a $C_4(X)$ G-module P is isomorphic to a module of the form $\Gamma(\xi)$ (resp. $\Gamma(\underline{V})$) if and only if P is F_r -projective (resp. F_r -free).

§ 4. Twisted group ring \widetilde{AG} . So far we used the term AG as an adjective. We now introduce a *twisted group ring* \widetilde{AG} . As an additive group, \widetilde{AG} is the ordinary group ring and the multiplication is given by

$$(\sum \lambda_q g) \circ (\sum \lambda'_q g') = \sum \lambda_q (g \cdot \lambda'_q) g g'$$

for $g, g' \in G$, $\lambda_g, \lambda_g' \in \Lambda$. Then $\widetilde{\Lambda G}$ is a ΛG -module in the sense of § 2.

Let F_t be the family consisting of the direct sum $(\widetilde{AG})^n$ of n copies of \widetilde{AG} where $n=1, 2, 3, \cdots$. If Λ is a commutative G-ring, then F_t is a multiplicative family. Denote by $K_0(\cdot)$ the ordinary algebraic K_0 group [5].

Theorem 4.1. We have the following isomorphisms of abelian groups:

$$K^{g}(\Lambda; F_{t})_{a} \underset{(I)}{\cong} K^{g}(\Lambda; F_{t})_{e} \underset{(II)}{\cong} K_{0}(\widetilde{\Lambda G}).$$

If Λ is commutative, (I) is an isomorphism of rings.

Proof. Theorem 4.1 is proved by showing that every short exact sequence of F_i -projective modules is split exact.

Remark 4.2. Theorem 4.1 implies that our definition of an equivariant algebraic K-group includes $K_0(\widetilde{\Lambda G})$ as a special case. Even if Λ is commutative, $\widetilde{\Lambda G}$ is not commutative in general and $K_0(\widetilde{\Lambda G})$ has no canonical ring structure.

Theorem 4.3. We have the following isomorphisms of abelian groups:

$$\begin{split} K \varDelta_{\scriptscriptstyle G}(X) &\underset{\scriptscriptstyle (\mathrm{III})}{\cong} K^{\scriptscriptstyle G}(C_{\scriptscriptstyle A}(X)\,; F_{\scriptscriptstyle r})_{\scriptscriptstyle d} \underset{\scriptscriptstyle (\mathrm{III})}{\cong} K^{\scriptscriptstyle G}(C_{\scriptscriptstyle A}(X)\,; F_{\scriptscriptstyle t})_{\scriptscriptstyle d} \\ &\underset{\scriptscriptstyle (\mathrm{III})}{\cong} K^{\scriptscriptstyle G}(C_{\scriptscriptstyle A}(X)\,; F_{\scriptscriptstyle t})_{\scriptscriptstyle e} \underset{\scriptscriptstyle (\mathrm{IV})}{\cong} K_{\scriptscriptstyle 0}(\widecheck{C_{\scriptscriptstyle A}(X)}G), \end{split}$$

If $\Delta = R$ or C, then (I)-(III) are isomorphisms of commutative rings.

Proof. Since every irreducible representation over Δ is a direct summand of the regular representation, the isomorphism (II) follows. The isomorphisms (I), (III) and (IV) follow from Theorems 3.1 and 4.1.

Remark 4.4. Since $C_{d}(X)G$ is not commutative in general,

 $K_0(\widetilde{C_A(X)}G)$ has no canonical ring structure even if $\Delta = R$ or C. Hence $K_0(\widetilde{AG})$ is insufficient as equivariant algebraic K-theory. This is one of the reasons why we introduced $K^c(\Lambda;F)_d$ and $K^c(\Lambda;F)_e$.

References

- [1] Atiyah, M. F., and Segal, G. B.: Equivariant K-theory. University of Warwick (1965) (mimeographed note).
- [2] Dress, A. W. M.: Notes on the theory of representations of a finite group, I: The Burnside ring of a finite group and some AGN applications. Bielefeld (1971) (multicopied notes).
- [3] —: Contributions to the theory of induced representations. Algebraic K-theory II. Lect. Notes in Math., vol. 342, Springer, pp. 183-240 (1973).
- [4] Fiedorowics, Z., Hauschild, H., and May, J. P.: Equivariant algebraic K-theory (to appear).
- [5] Milnor, J.: Introduction to algebraic K-theory. Ann. of Math. Study, 72 (1971).
- [6] Quillen, D.: Higher algebraic K-theory I. Lect. Note in Math., vol. 341, Springer, pp. 85-147 (1973).
- [7] Swan, R. G.: Vector bundles and projective modules. Trans. Amer. Math. Soc., 105, 264-277 (1962).