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§1. Introduction. Swan has shown that there is a one to one
correspondence between vector bundles over a compact Hausdorff
space X and finitely generated projective modules over the ring of
continuous real-valued functions on X [7].

In the present paper, we will consider an equivariant version of
this. Let G be a compact topological group. Then a notion of G-
vector bundles is already defined [1]. On the other hand, we introduce
notions of equivariant modules, of a family F' of equivariant modules
and of F-projective modules so that we have an equivariant Swan
theorem.

For each family F, we define two kinds of equivariant algebraic
K-theories associated with F'. Taking a suitable family F, we have
an isomorphism of an equivariant topological K-theory and our equi-
variant algebraic K-theory associated with F'.

Equivariant algebraic K-theory is studied along the line of Quillen
[6] by Fiedorowicz, Hauschild and May [4], while our approach is
along the line of the classical algebraic K-theory [6]. The reason will
clear up in a subsequent paper. Namely we will show that our equi-
variant algebraic K-theory is a Mackey functor [3]. Accordingly the
Dress induction theorem [2] is applicable. Using our equivariant
Swan theorem, we will show that Brauer and Artin type induction
theorems hold in equivariant topological K-theories KO,(X) and
K X). Accordingly equivariant topological K-theories are charac-
terized by the hyperelementary subgroups.

§2. Families and equivariant algebraic K-theory. The word
ring will always mean associative ring with an identity element 1.
Let G be a group. A G-ring is a ring 4 together with a G-action on
A preserving the ring structure. If 4is a G-ring, a AG-module is a
module M over A together with a G-action on M such that
(*) 9QAm+ Amy) = (92)(gm,) +(92)(gm,)

forany ge G, 1, 4, m,e M.

A collection F' of finitely generated AG-modules is called a family

if the following holds;

*  Dedicated to Prof. Minoru Nakaoka on his sixtieth birthday. Research
¢ rpovied in part by Grant-in-Aid for Scientific Research.
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“if M,, M,eF, then there exists an element N ¢ F' such that M,
@ M, is a direct summand of N”.

When 4 is a commutative G-ring, we can consider a product of
two AG-modules as follows. If M, and M, are AG-modules, define
M,QM, to be M,®,M, as a 4-module with G-action by g(m,®m,)= gm,
®gm, for ge G, m, e M,.

When 4 is a commutative G-ring, a collection F' of finitely gener-
ated AG-modules is called a multiplicative family if in addition to the
above condition the following holds;

“if M,, M, e F, then there exists an element N € F' such that M,
®M, is a direct summand of N”.

Each element of F' is called F-free. A AG-module M is called F'-
projective, if there exists a 4AG-module N so that M®N is F-free.

We introduce two kinds of equivariant algebraic K-groups as
follows. K¢ ; F), (resp. K¢(4;F),) is defined to be the abelian group
given by generators [P] where P is a F-projective 4G-module, with
relations

[P]=[P1+[P"]
whenever P=P'®P" (resp. 0—-P'—-P—P"—0 is an exact sequence of
AG-modules).

If 4 is a commutative G-ring and if F' is a multiplicative family
of AG-modules, the product above induces a structure of commutative
ring in K% ; F), (not in K°(4; F), in general).

§ 3. Equivariant Swan theorem. Let 4 be one of the classical
fields R (the real numbers), C (the complex numbers) or @ (the quater-
nions). Let X be a compact Hausdorff G-space. A 4G-vector bundle
& on X is a 4-vector bundle together with a G-action on ¢ preserving
the 4-vector bundle structure [1]. The set of isomorphism classes
of 4G-vector ktundles on X forms an abelian semi-group under the
Whitney sum. The associated abelian group is denoted by K4,(X).
The tensor product of G-vector bundles induces a structure of com-
mutative ring in K4,(X) for 4=R or C.

Let C,(X) be the ring of continuous 4-valued functions on X.
Then G acts on C,(X) by (goa)(@)=a(g-'x) for ge G, a e C,(X) and
xzeX. With these definitions, C,(X) becomes a G-ring. Then 4 is a
G-subring of C,(X) by regarding an element a € 4 as the constant func-
tion of value a.

The set I'(&) of all sections of & is a module over C,(X) and G acts
on I'(¢) by (g08)(x)=gs(g-'x) for ge G, sel'(§), xeX. Itiseasyto
see that with these definitions I'(¢) becomes a C,(X)G-module in the
sense of §2. In fact the notions of G-rings and AG-modules are ab-
stracted from C,(X) and I'(8).
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Let V be a finite dimensional G-representation space over 4.
Regarding C,(X) as a right 4-module, we form a finitely generated
C,(X)G-module C,(X)®,V. Let F, be the set consisting of such
modules C,(X)®,V. Then F, becomes a family in the sense of §2.
If A=R or C, then F, is a multiplicative family. Denote by V the
trivial bundle p: XX V—X.

Theorem 3.1. Let G be a compact topological group and X be a
compact Housdorff G-space. Then a C(X)G-module P is isomorphic
to a module of the form I'(§) (resp. I'(V)) if and only i¢f P is F,-
projective (resp. F,-free).

§4. Twisted group ring AG. So far we used the term 4G as an
adjective. We now introduce a twisted group ring AG. As an ad-
ditive group, AG is the ordinary group ring and the multiplication is
given by

(X 2,9) e G 290 =222,(9-2)99"
for g, 9’ e G, 2,, 2,€ 4. Then AG is a AG-module in the sense of §2.

Let F, be the family consisting of the direct sum (AG)" of # copies
of AG where n=1,2,8, ---.. If A is a commutative G-ring, then F, is
a multiplicative family. Denote by K ( ) the ordinary algebraic K,
group [5].

Theorem 4.1. We have the following isomorphisms of abelian
groups:

K°(4; F ) =K°U4; F) =E(AG).

If A is commutative, (I) is an isomorphism of rings.

Proof. Theorem 4.1 is proved by showing that every short exact
sequence of F,-projective modules is split exact.

Remark 4.2. Theorem 4.1 implies that our definition of an equi-
variant algebraic K-group includes K,(AG) as a special case. Even if
A is commutative, 4G is not commutative in general and KO(AAG’) has
no canonical ring structure.

Theorem 4.3. We have the following isomorphisms of abelian
groups :

KAG(X)EKG(CA(X) ;Fr)da;i-)KG(CA(X) s FD.

I

P—
= KG(CA(X) H Ft)e Ko(CA(X)G)~

(IIT) (IV)
If A=R or C, then (I)~(I1I) are isomorphisms of commutative rings.
Proof. Since every irreducible representation over 4 is a direct
summand of the regular representation, the isomorphism (II) follows.
The isomorphisms (I), (III) and (IV) follow from Theorems 3.1 and 4.1.

/\/ 0 3 .
Remark 4.4. Since C,/(X)G is not commutative in general,
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—~—~—
K (C,X)G) has no canonical ring structure even if 4=R or C. Hence
Ko(/fé) is insufficient as equivariant algebraic K-theory. This is one
of the reasons why we introduced K% ; F), and K°(4; F),.
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