8. Some New Linear Relations for Odd Degree Polynomial Splines at Mid-Points

By Manabu Sakai
Department of Mathematics, Faculty of Science, Kagoshima University
(Communicated by Shokichi Iyanaga, m. J. A., Jan. 12, 1983)

By making use of the B-spline $Q_{p+1}(x)$:

$$
Q_{p+1}(x)=(1 / p!) \sum_{i=0}^{p+1}(-1)^{i}\binom{p+1}{i}(x-i)_{+}^{p}
$$

we consider the spline function $s(x)$ of the form

$$
s(x)=\sum_{i=-p}^{n} \alpha_{i} Q_{p+1}\left(\frac{x}{h}-i+\frac{1}{2}\right), \quad n h=1
$$

where

$$
(x-i)_{+}^{p}=\left\{\begin{array}{cl}
(x-i)^{p} & \text { for } x \geq i \\
0 & \text { for } x<i
\end{array}\right.
$$

It is well known that
(i) s is a polynomial of degree p on $\left[\left(i-\frac{1}{2}\right) h,\left(i+\frac{1}{2}\right) h\right]$,
(ii) $s \in C^{p-1}(-\infty, \infty)$.

Let p and k be integers such that $1 \leq k \leq p-1$, then the following consistency relation holds

$$
h^{-k}\left\{Q_{p+1}^{(k)}\left(p+1-\frac{1}{2}\right) s_{i}+Q_{p+1}^{(k)}\left(p-\frac{1}{2}\right) s_{i+1}+\cdots+Q_{p+1}^{(k)}\left(\frac{1}{2}\right) s_{i+p}\right\}
$$

(*)

$$
\begin{equation*}
=Q_{p+1}\left(p+1-\frac{1}{2}\right) s_{i}^{(k)}+Q_{p+1}\left(p-\frac{1}{2}\right) s_{i+1}^{(k)}+\cdots+Q_{p+1}\left(\frac{1}{2}\right) s_{i+p}^{(k)} \tag{2}
\end{equation*}
$$

Here $s_{i}=s(i h)$ and $s_{i}^{(k)}=s^{(k)}(i h)$.
From now on, let p and k be odd and even integers, respectively. Since k is even, in virtue of the properties:

$$
\begin{aligned}
& Q_{p+1}(x) \equiv Q_{p+1}(p+1-x) \\
& Q_{p+1}(x) \equiv 0 \quad \text { for } x \leq 0, x \geq p+1
\end{aligned}
$$

we have

$$
\begin{aligned}
c_{j}^{(l)}= & Q_{p+1}^{(1)}\left(p+\frac{1}{2}-j\right)-Q_{p+1}^{(l)}\left(p+\frac{3}{2}-j\right)+\cdots \\
= & (-1)^{j-p}\left\{Q_{p+1}^{(l)}\left(p+\frac{1}{2}\right)-Q_{p+1}^{(l)}\left(p-\frac{1}{2}\right)+\cdots\right\} \\
& \text { for } l=0, k \text { and } j=p, p+1, \cdots
\end{aligned}
$$

Since p is odd, in virtue of the property :

$$
\begin{aligned}
& Q_{p+1}^{(l)}\left(p+\frac{1}{2}-j\right)=Q_{p+1}^{(l)}\left(j+\frac{1}{2}\right) \\
& \quad \text { for } l=0, k \text { and } j=p, p+1, \cdots,
\end{aligned}
$$

we have

$$
c_{j}^{(0)}=0 \quad \text { and } \quad c_{j}^{(k)}=0 \quad \text { for } j=p, p+1, \cdots
$$

Hence, an alternating sum obtained by writing down equation (*), substracting equation ($*$) with i replaced by $i+1$, adding equation ($*$) with i replaced by $i+2$ and so on is equal to the short term consistency relation between s_{j} and $s_{j}^{(k)}, j=i, i+1, \cdots, i+p-1$:
$h^{-k}\left\{c_{0}^{(k)} s_{i}+c_{1}^{(k)} s_{i+1}+\cdots+c_{p-1}^{(k)} s_{i+p-1}\right\}=c_{0}^{(0)} s_{i}^{(k)}+c_{1}^{(0)} s_{i+1}^{(k)}+\cdots+c_{p-1}^{(0)} s_{i+p-1}^{(k)}$
for odd p and even k such that $2 \leq k \leq p-1$.
Since $Q_{p+1}^{(l)}\left(p+\frac{1}{2}\right)-Q_{p+1}^{(l)}\left(p-\frac{1}{2}\right)+\cdots-Q_{p+1}^{(l)}\left(\frac{1}{2}\right)=0$

$$
l=0, k
$$

we have

$$
c_{j}^{(0)}=c_{p-1-j}^{(0)} \quad \text { and } \quad c_{j}^{(k)}=c_{p-1-j}^{(k)}, j=0,1, \cdots, p-1
$$

As examples of the above relations, let $s(x)$ be cubic and quintic splines, respectively. Then we have
(i) cubic spline,

$$
\frac{1}{2} h^{-2}\left(s_{i}-2 s_{i+1}+s_{i+2}\right)=(1 / 48)\left(s_{i}^{\prime \prime}+22 s_{i+1}^{\prime \prime}+s_{i+2}^{\prime \prime}\right) ;
$$

(ii) quintic spline,

$$
\begin{aligned}
& \frac{1}{2} h^{-4}\left(s_{i}-4 s_{i+1}+6 s_{i+2}-4 s_{i+3}+s_{i+4}\right) \\
& \quad=(1 / 3840)\left(s_{i}^{(4)}+236 s_{i+1}^{(4)}+1446 s_{i+2}^{(4)}+236 s_{i+3}^{(4)}+s_{i+4}^{(4)}\right) \\
& (1 / 48) h^{-2}\left(s_{i}+20 s_{i+1}-42 s_{i+2}+20 s_{i+3}+s_{i+4}\right) \\
& \quad=(1 / 3840)\left(s_{i}^{\prime \prime}+236 s_{i+1}^{\prime \prime}+1446 s_{i+2}^{\prime \prime}+236 s_{i+3}^{\prime \prime}+s_{i+4}^{\prime \prime}\right)
\end{aligned}
$$

These short term consistency relations are useful for the investigation of the spline interpolation at mid-points and the application of splines to the numerical solution of a boundary value problem.

Acknowledgment. The author is grateful to Prof. A. Mizutani of Gakushuin University for very helpful suggestions in the revision of this paper.

References

[1] J. Ahlberg, E. Nilson and J. Walsh: The Theory of Splines and their Applications. Academic Press, New York (1967).
[2] W. Hoskins and D. Meek: Linear dependence relations for polynomial splines at midpoints. BIT, 15, 272-276 (1975).
[3] D. Meek: Some new linear relations for even degree polynomial splines on a uniform mesh. ibid., 20, 382-384 (1980).

