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1o Introduction. Throughout this note X denotes, a real Banach
space, A is an m-dissipative opera.tor in X and (T(t)" t>__0} is the con-
tra.ction semigroup on D(A) (the closure of the domain of A) generated
by A. For rO, Jr denotes the resolvent of A, i.e., J-(I--rA)-.

Consider the resolvent iteration

(RI) (x0 e X
x=Jx_ for n.>= 1

where {r} is a sequence of positive numbers. The purpose of this
note is to prove the following

Theorem. T(t)x is strongly (resp. weakly) convergent as t--oo
for all x e D(A) if and only if (RI) is strongly (resp. weakly) conver-
gent as n--+c for all Xo e X and all {rn} e 12\l1.

This theorem has been proved by Passty [1, Theorem 2] under an
additional assumption that A is Lipschitzian. We can, however,
remove the assumption on A by using the idea of [3].

2. Proof of Theorem. By a contractive evolution system on
C(X) we mean a two-parameter family {U(t, s)’O<_s<_tc} of self-
maps of C satisfying" (i) U(t, t)z=z for t e R =[0, c) and z e C (ii)
U(t, s) U(s, r)z U(t, r)z for t _>_ s >__ r in R and z e C (iii) U(t, s)z

U(t, s)z. < z-z. for t__> s in R and z, z2 e C.
Definition ([1]). A contractive evolution system {U(t, s)" O<s_t

< oo} on D(A) is said to be asymptotically equal to the semigroup

{T(t) t_>_.0} if for each x e D(A),
(2.1) limt U(t + h, s)x-- T(h)U(t, s)xll=0 for each s>0, uni-

formly in h>0 and
(2.2) lirnt IIU(t+h, t)T(t)x--T(t+h)xl]=O uniformly in h>_0.

The following proposition is due to Passty [1].
Proposition 2.1. Let {U(t, s)" 0<s<t<oo} be a contractive evo-

lution system which is a.symptotically equal to the semigroup {T(t)"
t>_0}. Then T(t)x is strongly (resp. weakly) convergent as t--+oo for
all x e D(A) if and only if U(t, s)x is strongly (resp. weakly) convergent
as t--+oo for all x e D(A) and all s>__ O.
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Let (r} be a sequence of positive numbers such that {r} V. Put
n-1n(t)--"the index n for which = rKt<== for t>0 and n(0)=0

Clearly we have
Lemma 2.2. Define Ut, s) for Ogst by

V(t, 8)X= i=n(s)+In(t) Jrx for x e X,
Then {U(t, s)’Ogst} is a contractive evolution system on X,
and {U(t, s)" Ogsgt} is a contractive evolution system on
D(A), where U(t, s) is the restriction of U(t, s) to D(A).

Proposition 2.3. If {r} e ll1, then {U(t, s)]" Ost<} in
Lemma 2.2 is asymptotically equal to the semigroup {T(t) tO}.

To prove this proposition we use the following
Lemma 2.4. For x’, z eX, u eD(A), ll, i, ]0 and 0 we

have

Jx’-Jz Jx’ u + z-u
+ r+jR}/.]Au],

where II]Aull=inf {I.lyll" y e Au}.
Proof. The argument of [2, Lmma 2.1] gives the following

estimate"

(2.3)

for Xo, o e X, u e D(A), i, ] 0 and sequences {h}, {} of positive
numbers, where x,=J,x,_, 2=J2_ and =h=. =0. Let
x’ o z and h, r+,,,zeX, lland2>0. Using (2.3) withx0 J,x,=, we obtain the conclusion.

Proof of Proposition 2.3. It suffices to show that (2.1) and (2.2)
hold for every x e D(A). Let x e D(A).

We first show (2 1) In Lemma 2.4, we let l=n(t), x’ k=n(s)+l

Jx and i=n(t+h)-n(t), z=u=U(t, s)x, and ]=[h/2]. Then

implies

]]U(t+h, s)x J?/U(t, s)x <(+)=t=(t)+x r [h/212)
+ =()+(+). r+[h/]}/.l]Ax]] ].

As 20+,
I] U(t+ h, s)x- T(h)U(t, s)xl[<

where a(t)=sup {r,(,) st}. Since a(t) and L()+x r are convergent
to 0 as to, we obtain (2.1).

We next show (2.2). In Lemma 2.4, we let l=n(t), i=n(t+h)
-n(t), ]=[(t+h)/2]-[t/] and x’=z=u=Jt/x. Then

< Ii U(t+ h, t)J?mx U(t+ h, t_r .c,m,

+ U(t+ h, t)d.,,,]*/x



240 T. SUIIMOT0 and M. KOIZUMI [Vol. 59(A),

[f.<+> h 2"1,

<,+> r +([, t+h ] [])2]+:<’>+ a "lllAxlll

+k=n<t,+l "lllAxlll.

Here we have used that

Letting 0+,
u(t+ h, t)T(t)x-- T(t+ h)x

<[2r(t)+ rn(t+) r h)+=net)+.s lllAxlllkk=n(t)+l

(2r,, + ((t)+:+r))’. IIIAxlll
So (2.2) holds.

Proof of Theorem. ) Let Xo e X, (r,} e ll and let U(f, s) be as
in Lemma 2.2. By virtue of Propositions 2.3 and 2.1, U(t, 0)x0

U(t, r)U(r, O)xo is strongly (resp. weakly) convergent as t. In
particular, x: U(7: r, 0)x0 is strongly (resp. weakly) convergent
as .
) Let x e D(A), (r} e ll and let U(t, s) be as in Lemma 2.2. By

using Propositions 2.1 and 2.3 again, it suffices to show that U(t, s)x
is strongly (resp. weakly) convergent as t for every s0. Now,

’= for k 1, 2, Thenlet s0 and put r r+,
U(t, s)x=J,;<,,_<,,

is strongly (resp. weakly) convergent as t by our assumption
because {r} e ll.
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