69. On the Asymptotic Behavior of a Nonlinear Contraction Semigroup and the Resolvent Iteration

By Tetsuji SUGIMOTO and Munehito KOIZUMI Department of Mathematics, Waseda University

(Communicated by Kôsaku YOSIDA, M. J. A., June 14, 1983)

1. Introduction. Throughout this note X denotes a real Banach space, A is an *m*-dissipative operator in X and $\{T(t): t \ge 0\}$ is the contraction semigroup on $\overline{D(A)}$ (the closure of the domain of A) generated by A. For r > 0, J_r denotes the resolvent of A, i.e., $J_r = (I - rA)^{-1}$.

Consider the resolvent iteration

(RI)
$$\begin{cases} x_0 \in X \\ x_n = J_{r_n} x_{n-1} & \text{for } n \ge 1 \end{cases}$$

where $\{r_n\}$ is a sequence of positive numbers. The purpose of this note is to prove the following

Theorem. T(t)x is strongly (resp. weakly) convergent as $t\to\infty$ for all $x \in \overline{D(A)}$ if and only if (RI) is strongly (resp. weakly) convergent as $n\to\infty$ for all $x_0 \in X$ and all $\{r_n\} \in l^2 \setminus l^1$.

This theorem has been proved by Passty [1, Theorem 2] under an additional assumption that A is Lipschitzian. We can, however, remove the assumption on A by using the idea of [3].

2. Proof of Theorem. By a contractive evolution system on $C(\subset X)$ we mean a two-parameter family $\{U(t,s): 0 \le s \le t < \infty\}$ of selfmaps of C satisfying: (i) U(t,t)z=z for $t \in R^+=[0,\infty)$ and $z \in C$; (ii) U(t,s) U(s,r)z=U(t,r)z for $t \ge s \ge r$ in R^+ and $z \in C$; (iii) $|| U(t,s)z_1 - U(t,s)z_2 || \le ||z_1-z_2||$ for $t \ge s$ in R^+ and $z_1, z_2 \in C$.

Definition ([1]). A contractive evolution system $\{U(t,s): 0 \le s \le t < \infty\}$ on $\overline{D(A)}$ is said to be asymptotically equal to the semigroup $\{T(t): t \ge 0\}$ if for each $x \in \overline{D(A)}$,

(2.1) $\lim_{t\to\infty} \|U(t+h,s)x - T(h)U(t,s)x\| = 0$ for each $s \ge 0$, uniformly in $h \ge 0$ and

(2.2) $\lim_{t\to\infty} \|U(t+h,t)T(t)x-T(t+h)x\|=0 \text{ uniformly in } h\geq 0.$

The following proposition is due to Passty [1].

Proposition 2.1. Let $\{U(t, s): 0 \leq s \leq t < \infty\}$ be a contractive evolution system which is asymptotically equal to the semigroup $\{T(t): t \geq 0\}$. Then T(t)x is strongly (resp. weakly) convergent as $t \to \infty$ for all $x \in \overline{D(A)}$ if and only if U(t, s)x is strongly (resp. weakly) convergent as $t \to \infty$ for all $x \in \overline{D(A)}$ and all $s \geq 0$.

Let $\{r_n\}$ be a sequence of positive numbers such that $\{r_n\} \in l^i$. Put n(t) = "the index *n* for which $\sum_{i=1}^{n-1} r_i < t \leq \sum_{i=1}^n r_i$ " for t > 0 and n(0) = 0.

Clearly we have

No. 6]

Lemma 2.2. Define U(t, s) for $0 \leq s \leq t < \infty$ by

 $U(t,s)x = \prod_{i=n(s)+1}^{n(t)} J_{r_i}x \quad for \ x \in X.$

Then $\{U(t,s): 0 \le s \le t < \infty\}$ is a contractive evolution system on X, and $\{U(t,s)|_{\overline{D(A)}}: 0 \le s \le t < \infty\}$ is a contractive evolution system on $\overline{D(A)}$, where $U(t,s)|_{\overline{D(A)}}$ is the restriction of U(t,s) to $\overline{D(A)}$.

Proposition 2.3. If $\{r_n\} \in l^2 \setminus l^1$, then $\{U(t,s)|_{\overline{D(4)}} : 0 \leq s \leq t < \infty\}$ in Lemma 2.2 is asymptotically equal to the semigroup $\{T(t) : t \geq 0\}$.

To prove this proposition we use the following

Lemma 2.4. For x', $z \in X$, $u \in D(A)$, $l \ge 1$, $i, j \ge 0$ and $\lambda > 0$ we have

$$\begin{split} \| \prod_{k=l}^{l+i} J_{r_k} x' - J_j^i z \| \leq \| J_{r_l} x' - u \| + \| z - u \| \\ + \{ (\sum_{k=l+1}^{l+i} r_k - j\lambda)^2 + \sum_{k=l+1}^{l+i} r_k^2 + j\lambda^2 \}^{1/2} \cdot \| |Au\| \|_{L^2} \end{split}$$

where $|||Au||| = \inf \{||y|| : y \in Au\}.$

Proof. The argument of [2, Lemma 2.1] gives the following estimate:

(2.3)
$$\|x_i - \hat{x}_j\| \leq \|x_0 - u\| + \|\hat{x}_0 - u\| \\ + \{(\sum_{k=1}^i h_k - \sum_{k=1}^j \hat{h}_k)^2 + \sum_{k=1}^i h_k^2 + \sum_{k=1}^j \hat{h}_k^2\} \cdot \||Au\||$$

for x_0 , $\hat{x}_0 \in X$, $u \in D(A)$, $i, j \ge 0$ and sequences $\{h_k\}$, $\{\hat{h}_k\}$ of positive numbers, where $x_i = J_{h_i} x_{i-1}$, $\hat{x}_j = J_{h_j} \hat{x}_{j-1}$ and $\sum_{k=1}^0 h_k = \sum_{k=1}^0 \hat{h}_k = 0$. Let $x', z \in X$, $l \ge 1$ and $\lambda > 0$. Using (2.3) with $x_0 = J_{r_i} x'$, $\hat{x}_0 = z$ and $h_i = r_{i+i}$, $\hat{h}_j = \lambda$, we obtain the conclusion.

Proof of Proposition 2.3. It suffices to show that (2.1) and (2.2) hold for every $x \in D(A)$. Let $x \in D(A)$.

We first show (2.1). In Lemma 2.4, we let l=n(t), $x' = \prod_{k=n(s)+1}^{n(t)-1} J_{r_k}x$ and i=n(t+h)-n(t), z=u=U(t,s)x, and $j=[h/\lambda]$. Then $|||AU(t,s)x||| \le |||Ax|||$

$$\| U(t+h,s)x - J_{\lambda}^{[h/\lambda]} U(t,s)x \| \leq \{ \sum_{k=n(t)+1}^{n(t+h)} r_k - [h/\lambda]\lambda^2 + \sum_{k=n(t)+1}^{n(t+h)} r_k^2 + [h/\lambda]\lambda^2 \}^{1/2} \cdot \| Ax \| \|.$$

As $\lambda \rightarrow 0+$,

$$\begin{aligned} \| U(t+h,s)x - T(h)U(t,s)x \| &\leq \{ (\sum_{k=n(\ell)+1}^{n(\ell+h)} r_k - h)^2 + \sum_{k=n(\ell)+1}^{\infty} r_k^2 \}^{1/2} \cdot \| \| Ax \| \\ &\leq (\alpha(t)^2 + \sum_{k=n(\ell)+1}^{\infty} r_k^2)^{1/2} \cdot \| \| Ax \| \|, \end{aligned}$$

where $\alpha(t) = \sup \{r_{n(s)} : s \ge t\}$. Since $\alpha(t)$ and $\sum_{k=n(t)+1}^{\infty} r_k^2$ are convergent to 0 as $t \to \infty$, we obtain (2.1).

We next show (2.2). In Lemma 2.4, we let l=n(t), i=n(t+h)-n(t), $j=[(t+h)/\lambda]-[t/\lambda]$ and $x'=z=u=J_{\lambda}^{[t/\lambda]}x$. Then

$$\begin{split} \| U(t+h,t) J_{\lambda}^{[t/\lambda]} x - J_{\lambda}^{[(t+h)/\lambda]} x \| \\ \leq & \| U(t+h,t) J_{\lambda}^{[t/\lambda]} x - U(t+h,t) J_{r_{n(t)}} J_{\lambda}^{[t/\lambda]} x \| \\ & + \| U(t+h,t) J_{r_{n(t)}} J_{\lambda}^{[t/\lambda]} x - J_{\lambda}^{[(t+h)/\lambda]} x \| \end{split}$$

$$\leq 2 \|J_{r_{n(t)}} J_{\lambda}^{[t/\lambda]} x - J_{\lambda}^{[t/\lambda]} x \| + \left[\left\{ \sum_{k=n(t)+1}^{n(t+h)} r_{k} - \left(\left[\frac{t+h}{\lambda} \right] - \left[\frac{t}{\lambda} \right] \right) \lambda \right\}^{2} \right. \\ \left. + \sum_{k=n(t)+1}^{n(t+h)} r_{k}^{2} + \left(\left[\frac{t+h}{\lambda} \right] - \left[\frac{t}{\lambda} \right] \right) \lambda^{2} \right]^{1/2} \cdot \||Ax\||$$

$$\leq 2r_{n(t)} \||Ax\|| + \left[\left\{ \sum_{k=n(t)+1}^{n(t+h)} r_{k} - \left(\left[\frac{t+h}{\lambda} \right] - \left[\frac{t}{\lambda} \right] \right) \lambda \right\}^{2} \right. \\ \left. + \sum_{k=n(t)+1}^{n(t+h)} r_{k}^{2} + \left(\left[\frac{t+h}{\lambda} \right] - \left[\frac{t}{\lambda} \right] \right) \lambda^{2} \right]^{1/2} \cdot \||Ax\||.$$

Here we have used that

 $\begin{aligned} \|J_{r_{n(t)}}J_{\lambda}^{[t/\lambda]}x - J_{\lambda}^{[t/\lambda]}x\| \leq r_{n(t)} |||AJ_{\lambda}^{[t/\lambda]}x||| \leq r_{n(t)} |||Ax|||. \\ \text{Letting } \lambda \to 0+, \\ \|U(t+h,t)T(t)x - T(t+h)x\| \end{aligned}$

$$\begin{aligned} &|U(t+h,t)T(t)x - T(t+h)x|| \\ &\leq [2r_{n(t)} + \{(\sum_{k=n(t)+1}^{n(t+h)} r_k - h)^2 + \sum_{k=n(t)+1}^{\infty} r_k^2\}^{1/2}]|||Ax||| \\ &\leq \{2r_{n(t)} + (\alpha(t)^2 + \sum_{k=n(t)+1}^{\infty} r_k^2)\}^{1/2} \cdot |||Ax|||. \end{aligned}$$

So (2.2) holds.

Proof of Theorem. \Rightarrow) Let $x_0 \in X$, $\{r_n\} \in l^2 \setminus l^1$ and let U(t, s) be as in Lemma 2.2. By virtue of Propositions 2.3 and 2.1, $U(t, 0)x_0$ $= U(t, r_1)U(r_1, 0)x_0$ is strongly (resp. weakly) convergent as $t \to \infty$. In particular, $x_n = U(\sum_{i=1}^n r_i, 0)x_0$ is strongly (resp. weakly) convergent as $n \to \infty$.

 \Leftrightarrow) Let $x \in \overline{D(A)}$, $\{r_n\} \in l^2 \setminus l^1$ and let U(t, s) be as in Lemma 2.2. By using Propositions 2.1 and 2.3 again, it suffices to show that U(t, s)xis strongly (resp. weakly) convergent as $t \to \infty$ for every $s \ge 0$. Now, let $s \ge 0$ and put $r'_k = r_{k+n(s)}$ for $k=1, 2, \cdots$. Then

 $U(t, s)x = J_{r'_{n(t)}-n(s)} \cdot \cdots \cdot J_{r'_{2}}J_{r'_{1}}x$

is strongly (resp. weakly) convergent as $t \to \infty$ by our assumption because $\{r'_k\} \in l^2 \setminus l^1$.

Acknowledgement. The authors wish to thank Profs. I. Miyadera and K. Kobayasi for their guidance and suggestions.

References

- G. B. Passty: Preservation of the asymptotic behavior of a nonlinear contractive semigroup by backward differencing. Houston J. Math., 7, 103-110 (1981).
- [2] Y. Kobayashi: Difference approximation of Cauchy problems for quasidissipative operators and generation of nonlinear semigroups. J. Math. Soc. Japan, 27, 640-665 (1975).
- [3] I. Miyadera and K. Kobayasi: On the asymptotic behaviour of almostorbits of nonlinear contraction semigroups in Banach spaces. Nonlinear Analysis, 6, 349-365 (1982).